Refine Your Search



Search Results

Technical Paper

Heavy-Duty Diesel Truck In-Use Emission Test Program for Model Years 1950 through 1975

Criteria pollutants were measured from ten Class 7 and 8 (i.e., gross vehicle weights > 33,000 lb) heavy-duty diesel trucks with engine model years between 1953 and 1975. The data was used by EPA to estimate that period's particulate matter emission rates for these type engines and will be used to develop dose response relationships with existing epidemiological data. Particulate samples were analyzed for sulfate and volatile organic fraction. Carbon soot was estimated. The trucks had particulate emissions of 2 to 10 g/mi as compared to 1 to 6 g/mi for trucks with model year engines from 1975 through the mid-1980s, and less than 1 g/mi for post-1988 trucks.
Technical Paper

Qualification of an Automatic Tire Inflation System for Long Haul Trucks

An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers, requires modification of the axles to direct air to the tires. The ATIS requires a drilled hole through the axle tube for the installation of a pneumatic fitting. The trucking industry expressed concern about the modification and its impact upon the axle structure, and the general durability of the system over a long period. A three-phase test program was developed and conducted to satisfy the concerns of the industry.
Technical Paper

Manual Transmission Efficiency Trends and Characteristics

This paper presents a discussion on manual transmission torque losses and focuses specifically on the relationship between torque loss, input speed and torque. It also includes a discussion on other factors affecting torque loss, such as inclination angle and lube oil temperature. Manual transmissions used in compact light truck applications have torque losses that are a function of input speed and torque. Efficiency studies done on manual transmissions in the engine-driving mode indicate that torque losses, in other than direct-drive gears, are considerably more dependent on input torque than input speed. It was also observed that efficiency was significantly affected by the inclination angle and lube oil temperature.
Technical Paper

Flexible Body Dynamic Simulation of a Large Mining Truck

A three dimensional mathematical model of a Caterpillar mining truck has been developed to simulate transient structural deformation and suspension response of a large mining truck traversing a known rough terrain course. The model incorporates compliant (finite element) representations of the truck frame, dump body, and rear axle housing into a dynamic mechanical system simulation model. Model results - frame acceleration, axle housing elastic deformation, and suspension response (strut pressures and displacements) are correlated with measured data from an instrumented truck traversing the steel speed bump portion of the rough terrain course. Results demonstrate that complex truck behavior can be simulated by combining finite element and mechanical system simulations.
Technical Paper

Simultaneous Reduction of Diesel Particulate and NOx Using a Plasma

A non-thermal plasma treatment of diesel engine exhaust was effective in removing particulate (soot) and oxides of nitrogen (NOx) from two different light-duty diesel vehicles: an older-technology indirect-injection Toyota truck, and a newer-technology direct-injection Dodge truck. Particulate removal efficiencies and NOx conversion efficiencies were determined at space velocities up to 20,000/hr. Particulate removal efficiencies were above 60 percent for most conditions, but decreased with increasing space velocities. Conversion efficiencies for NOx and carbon monoxide (CO) were also dependent on the space velocity. The NOx conversion efficiencies were generally greater than 40 percent at space velocities less than 7000/hr. The CO concentration increased through the plasma reaction bed indicating that CO was produced by reactions in the plasma.
Technical Paper

Design of an Emergency Tire Inflation System for Long Haul Trucks

An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
Technical Paper

Electronic Data Acquisition and Analysis for the NHTSA ABS Fleet Evaluation

Antilock brake systems for air braked vehicles have been growing in popularity in Great Britain and Europe and appear to be candidates for extensive use in the United States as well. Previous mandated use in the United States during the 1970's was not successful, in part because of reliability problems, and the National Highway Traffic Safety Administration (NHTSA) has decided that a thorough evaluation of air brake antilock systems is necessary prior to any decision about the appropriateness of future mandatory use in the United States. This paper describes the electronic data collection equipment and processing techniques which are being used in the NHTSA 200 truck evaluation project. Detailed maintenance histories for each truck are being recorded manually as a separate segment of the project. An average of 6 to 7 megabytes of data per week is being collected in the various cities in which fleets are operating test vehicles.
Technical Paper

The Development of a Production Qualified Catalytic Converter

Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Technical Paper

Engine Electronics Technology

Electronics technology has evolved significantly since the first electronically controlled heavy duty on-highway truck engines were introduced in the mid 1980's. Engine control hardware, software, and sensor designs have been driven by many factors. Emissions regulations, fuel economy, engine performance, operator features, fleet management information, diagnostics, vehicle integration, reliability, and new electronics technology are some of those factors. The latest engine electronics technology is not only found in heavy duty on-highway trucks, but in off-highway applications as well. Track-type tractors, haul trucks, wheel loaders, and agricultural tractors now benefit from the advantages of electronic engines. And, many more new applications are being developed.
Technical Paper

Payload Measurement System on Off-Highway Trucks for Mine Applications

The need to accurately measure and record the payload of large off-highway mining trucks was identified by The Broken Hill Proprietary Co. Ltd. (BHP). In response. Caterpillar designed and developed a system to fufill that need. The payload carried by mine haul trucks has a strong influence on production rates and costs. The system developed should enable payloads to be much better controlled than has been previously possible. The system also provides a number of mine management features. The development of the system is described from the concept stage to the production stage. Final production capabilities of the microprocessor based system are described. Payload measurement capabilities, diagnostic capabilities, data storage, and data extraction methods are discussed.
Technical Paper

The Development of Techniques to Measure Vehicle Spray on Wet Roads

Several techniques have been developed to measure the relative amount of splash and spray produced by vehicles when driven on wet roads at highway speeds under controlled conditions. This paper discusses considerations in the development of measurement techniques such as those utilizing photographs, a photometer, densitometer, spraymeter, and spray collector. The development of each technique is described. Some test data utilizing the photometer and densitometer techniques are presented in a comparison of two different trucks run on two different road surfaces with new and worn tires, fully loaded and unloaded, and under light and heavy road moisture conditions.
Technical Paper

Emissions from Trucks by Chassis Version of 1983 Transient Procedure

Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Technical Paper

Noise Benchmarking of the Detroit Diesel DD15 Engine

Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

Connected Commercial Vehicles

While initial Connected Vehicle research in the United States was focusing almost exclusively on passenger vehicles, a program was envisioned that would enhance highway safety, mobility, and operational efficiencies through the application of the technology to commercial vehicles. This program was realized in 2009 by funding from the I-95 Corridor Coalition, led by the New York State Department of Transportation, and called the Commercial Vehicle Infrastructure Integration (CVII) program. The CVII program focuses on developing, testing and deploying Connected Vehicle technology for heavy vehicles. Since its inception, the CVII program has developed numerous Vehicle-to-Vehicle and Vehicle-to-Infrastructure applications for trucks that leverage communication with roadside infrastructure and other light and heavy duty vehicles to meet the objectives of the program.
Technical Paper

Technical Approach to Increasing Fuel Economy Test Precision with Light Duty Vehicles on a Chassis Dynamometer

In 2012, NHTSA and EPA extended Corporate Average Fuel Economy (CAFE) standards for light duty vehicles through the 2025 model year. The new standards require passenger cars to achieve an average of five percent annual improvement in fuel economy and light trucks to achieve three percent annual improvement. This regulatory requirement to improve fuel economy is driving research and development into fuel-saving technologies. A large portion of the current research is focused on incremental improvements in fuel economy through technologies such as new lubricant formulations. While these technologies typically yield less than two percent improvement, the gains are extremely significant and will play an increasing role in the overall effort to improve fuel economy. The ability to measure small, but statistically significant, changes in vehicle fuel economy is vital to the development of new technologies.
Technical Paper

Extreme Field Test for Organic Additive Coolant Technology

Field testing of an extended life coolant technology in Class 8 trucks, equipped with Caterpillar C-12 engines revealed excellent coolant life with negligible inhibitor depletion to 400,000 miles with no refortification and no coolant top-off. In separate evaluations in Caterpillar 3406E equipped trucks, extended corrosion protection and component durability were established out to 700,000 miles, without the need for refortification other than top-off.
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).