Refine Your Search



Search Results

Technical Paper

Fuel Evaporation Parameter Identification during SI Cold Start

The stochastic properties of continuous time model parameters obtained through discrete least squares estimation are examined. Particular attention is given to the application of estimating the fuel evaporation dynamics of a V-8 SI engine. The continuous time parameter distributions in this case are biased. The bias is shown to be a function of both measurement noise and sampling rate selection. Analysis and experimental results suggest that for each particular model, there is a corresponding optimum sampling rate. A bias compensation formula is proposed that improves the accuracy of least squares estimation without iterative techniques.
Technical Paper

Modeling NOx Emissions from Lean-Burn Natural Gas Engines

A zero-dimensional cycle simulation model coupled with a chemical equilibrium model and a two-zone combustion model has been extended to predict nitric oxide formation and emissions from spark-ignited, lean-burn natural gas engines. It is demonstrated that using the extended Zeldovich mechanism alone, the NOx emissions from an 8.1-liter, 6-cylinder, natural gas engine were significantly under predicted. However, by combining the predicted NOx formation from both the extended Zeldovich thermal NO and the Fenimore prompt NO mechanisms, the NOx emissions were predicted with fair accuracy over a range of engine powers and lean-burn equivalence ratios. The effect of injection timing on NOx emissions was under predicted. Humidity effects on NOx formation were slightly under predicted in another engine, a 6.8-liter, 6-cylinder, natural gas engine. Engine power was well predicted in both engines, which is a prerequisite to accurate NOx predictions.
Technical Paper

A Study of Engine Sensitivity to Spark Plug Rim-Fire

A recent study of engine sensitivity revealed that spark plugs used in conventional spark-ignited gasoline-fueled engines do not always fire in the intended fashion. Rather than firing to the ground strap during each ignition event, the arc frequently travels to the “rim” or “shell” of the spark plug. This behavior is termed rim-fire and although observed by other researchers in industry, its effects on engine performance are not widely reported. This paper addresses some of the quantitative effects of rim-fire on engine performance. Combustion data were recorded for various repeat conditions on a Ford 1.8L Zetec engine. The first set of engine tests used four, new, conventional, automotive spark plugs. The second set of engine tests used four modified spark plugs that induced 100% rim-fire when the ground strap was permanently removed. The study focused on part- and full-load engine performance, EGR tolerance, and step-transient characteristics.
Technical Paper

Mixture Preparation Measurements

A technique was demonstrated that can quantify the state of mixture preparation during the critical periods of ignition and very early flame development in a “production” spark-ignited engine. To determine the degree of stratification and vaporization two fast-response hydrocarbon (HC) probes were placed in a specially adapted spark plug. Data from the HC analyzer was correlated with cylinder pressure data to relate changes in mixture preparation to classic engine measures, such as indicated mean effective pressure (IMEP) and ignition delay.
Technical Paper

A Laboratory-Scale Test to Predict Intake Valve Deposits

The performance of modern spark ignition engines with electronically controlled fuel injection systems may be adversely affected by formation of deposits around the intake valve. The rate of deposit formation is sensitive to fuel composition and boiling point distribution, as well as engine design and operating conditions. Deposit control additives are available, and full-scale engine and vehicle tests have been developed to rate fuel deposition characteristics. However, the expense associated with full-scale testing, combined with the many variables affecting repeatability, create a need for a well controlled laboratory-scale bench test. This paper describes the development of both the test apparatus and methodology to accurately reproduce the conditions present at the intake valve of an operating engine. Procedures were developed to simulate both a “keep clean” sequence, with neat or additized fuel, and also a “clean-up” sequence, using fuel that contains a deposit control additive.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

Improved Atomization of Methanol for Low-Temperature Starting in Spark-Ignition Engines

Heating neat (100 percent) methanol fuel (M100) is shown to improve dramatically the atomization of the fuel from a production, automotive, port fuel injector of pintle design. This improvement is particularly noticeable and important when compared with atomization at low fuel temperatures, corresponding to those conditions where cold-start is a significant problem with neat methanol-fueled (M100) vehicles. The improved atomization is demonstrated with photographs and laser-diffraction measurements of the drop-size distributions. Fuel temperatures were varied from -34°C (-29°F to 117°C (243°F), while the boiling point of methanol is 64.7°C (148.5°F). Air temperatures were ambient at about 24°C (75°F). For temperatures above the boiling point, some flash boiling and vaporization were presumably occurring, and these may have contributed to the atomization, but the trends for drop size did not shown any discontinuity near the boiling point.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Engine Wear With Methanol Fuel in a Nitrogen-Free Environnment

Several test programs have shown that the combustion of methanol in spark ignition engines can cause unusually high corrosive wear of the upper cylinder bore and ring areas. In this study, a 2.3-liter engine fueled with methanol was operated in a nitrogen-free atmosphere to determine the importance of nitric acid in the corrosion mechanism. A 20-hour steady-state test was carried out using neat methanol as the fuel and a mixture of oxygen, argon, and carbon dioxide in place of air. Only trace amounts of NOx and nitric acid were found in the exhaust products during this test. The wear, indicated by iron buildup in the lubricant, was found to be essentially the same in the nitrogen-free test as that detected in baseline engine tests combusting methanol-air mixtures. It was concluded that nitric acid does not play a role in the corrosion mechanism.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
Technical Paper

Miller Cycle Application to the Scuderi Split Cycle Engine (by Downsizing the Compressor Cylinder)

The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. A Miller cycle configuration of the engine is made possible by turbocharging with a downsized compressor cylinder and has been modeled in 1-dimensional cycle simulation software.
Technical Paper

Methodology Development for Tumble Port Evaluation

The objective of this work was to develop a methodology to rapidly assess comparative intake port designs for their capability to produce tumble flow in spark-ignition engine combustion chambers. Tumble characteristics are of relatively recent interest, and are generated by a combination of intake port geometry, valve lift schedule, and piston motion. While simple approaches to characterize tumble from steady-state cylinder head flow benches have often been used, the ability to correlate the results to operating engines is limited. The only available methods that take into account both piston motion and valve lift are detailed computational fluid dynamic (CFD) analysis, or optical measurements of flow velocity. These approaches are too resource intensive for rapid comparative assessment of multiple port designs. Based on the best features of current steady-flow testing, a simplified computational approach was identified to take into account the important effects of the moving piston.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Carbureted SI Engine Air Flow Measurements

Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.