Refine Your Search

Topic

Author

Search Results

Video

Overview of Southwest Research Institute Activities in Engine Technology R&D

2012-05-10
This presentation will cover an overview of challenges and key discussion points for advanced electric motor and drive testing . Voiko will visit some examples of how D&V approaches these issues and also some suggestions for how the industry can view these intriguing problems as opportunities. The presentation will also delve into current testing developments that involve resolver, load bank and power measurement devices by highlighting solutions in the market today. There will also be a cursory look into the future of electric motor testing and what we can expect in the near term. Presenter Voiko Loukanov, D&V Electronics Limited
Journal Article

Simulation of Organic Rankine Cycle Electric Power Generation from Light-Duty Spark Ignition and Diesel Engine Exhaust Flows

2013-04-08
2013-01-1644
The performance of an organic Rankine cycle (ORC) used to recover waste heat from the exhaust of a diesel and a spark ignition engine for electric power generation was modeled. The design elements of the ORC incorporated into the thermodynamic model were based on an experimental study performed at Oak Ridge National Laboratory in which a regenerative organic Rankine cycle system was designed, assembled and integrated into the exhaust of a 1.9 liter 4-cylinder automotive turbo-diesel. This engine was operated at a single fixed-load point at which Rankine cycle state point temperatures as well as the electrical power output of an electric generator coupled to a turbine that expanded R245fa refrigerant were measured. These data were used for model calibration.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Journal Article

A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft

2011-10-18
2011-01-2652
The general benefits of automation are well documented. Order of magnitude improvements are achievable in processing speeds, production rates, and efficiency. Other benefits include improved process consistency (inversely, reduced process variation), reduced waste and energy consumption, and risk reduction to operators. These benefits are especially true for the automation of the aerospace paint removal (or "depaint") processes. Southwest Research Institute® (SwRI®) developed and implemented two systems in the early 1990s for depainting full-body fighter aircraft at Robins Air Force Base (AFB) at Warner Robins, Georgia, and Hill AFB at Ogden, Utah. These systems have been in production use, almost continuously for approximately 20 years, for the depainting of the F-15 Eagle and the F-16 Falcon fighter aircraft, respectively.
Journal Article

HMMWV Axle Testing Methodology to Determine Efficiency Improvements with Superfinished Hypoids

2013-04-08
2013-01-0605
A dynamometer test methodology was developed for evaluation of HMMWV axle efficiency with hypoid gearsets, comparing those having various degrees of superfinish versus new production axles as well as used axles removed at depot maintenance. To ensure real-world applicability, a HMMWV variant vehicle model was created and simulated over a peacetime vehicle duty cycle, which was developed to represent a mission scenario. In addition, tractive effort calculations were then used to determine the maximum input torques. The drive cycle developed above was modified into two different profiles having varying degrees of torque variability to determine if the degree of variability would have a significant influence on efficiency in the transient dynamometer tests. Additionally, steady state efficiency performance is measured at four input pinion speeds from 700-2500 rpm, five input torques from 50 - 400 N⋅m, and two sump temperatures, 80°C and 110°C.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Technical Paper

Filtration Requirements and Evaluation Procedure for a Rotary Injection Fuel Pump

1997-10-01
972872
A cooperative research and development program was organized to determine the critical particle size of abrasive debris that will cause significant wear in rotary injection fuel pumps. Various double-cut test dusts ranging from 0-5 to 10-20 μm were evaluated to determine which caused the pumps to fail. With the exception of the 0-5-μm test dust, all other test dust ranges evaluated caused failure in the rotary injection pumps. After preliminary testing, it was agreed that the 4-8-μm test dust would be used for further testing. Analysis revealed that the critical particle size causing significant wear is 6-7 μm. This is a smaller abrasive particle size than reported in previously published literature. A rotary injection pump evaluation methodology was developed. During actual operation, the fuel injection process creates a shock wave that propagates back up the fuel line to the fuel filter.
Technical Paper

Applying Ball Bearings to the Series Turbochargers for the Caterpillar® Heavy-Duty On-Highway Truck Engines

2007-10-30
2007-01-4235
Fuel is a significant portion of the operating cost for an on-highway diesel engine and fuel economy is important to the economics of shipping most goods in North America. Cat® ACERT™ engine technology is no exception. Ball bearings have been applied to the series turbochargers for the Caterpillar heavy-duty, on-highway diesel truck engines in order to reduce mechanical loss for improved efficiency and lower fuel consumption. Over many years of turbocharger development, much effort has been put into improving the aerodynamic efficiency of the compressor and turbine stages. Over the same span of time, the mechanical bearing losses of a turbocharger have not experienced a significant reduction in power consumption. Most turbochargers continue to use conventional hydrodynamic radial and thrust bearings to support the rotor. While these conventional bearings provide a low cost solution, they do create significant mechanical loss.
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

1998-02-23
980635
Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Fuel Efficiency Effects of Lubricants in Military Vehicles

2010-10-25
2010-01-2180
The US Army is currently seeking to reduce fuel consumption by utilizing fuel efficient lubricants in its ground vehicle fleet. An additional desire is for a lubricant which would consist of an all-season (arctic to desert), fuel efficient, multifunctional Single Common Powertrain Lubricant (SCPL) with extended drain capabilities. To quantify the fuel efficiency impact of a SCPL type fluid in the engine and transmission, current MIL-PRF-46167D arctic engine oil was used in place of MIL-PRF-2104G 15W-40 oil and SAE J1321 Fuel Consumption In-Service testing was conducted. Additionally, synthetic SAE 75W-140 gear oil was evaluated in the axles of the vehicles in place of an SAE J2360 80W-90 oil. The test vehicles used for the study were three M1083A1 5-Ton Cargo vehicles from the Family of Medium Tactical Vehicles (FMTV).
Technical Paper

Diesel Engine Electric Turbo Compound Technology

2003-06-23
2003-01-2294
A cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar is aimed at demonstrating electric turbo compound technology on a Class 8 truck engine. The goal is to demonstrate the level of fuel efficiency improvement attainable with an electric turbocompound system. The system consists of a turbocharger with an electric motor/generator integrated into the turbo shaft. The generator extracts surplus power at the turbine, and the electricity it produces is used to run a motor mounted on the engine crankshaft, recovering otherwise wasted energy in the exhaust gases. The electric turbocompound system also provides more control flexibility in that the amount of power extracted can be varied. This allows for control of engine boost and thus air/fuel ratio. The paper presents the status of development of an electric turbocompound system for a Caterpillar heavy-duty on-highway truck engine.
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
Technical Paper

Effects of Engine Operating Conditions on In-Cylinder Air/Fuel Ratio Detection Using a Production Ion Sensing Device

2004-03-08
2004-01-0515
In-cylinder ion sensing through sparkplug electrodes can be used to determine in-cylinder A/F ratio by using a modified production coil-on-plug ignition system having ion sensing capability. The in-cylinder ionization can be characterized by the height of the peak, location of the peak from ignition command and area under the ionization signal curve. The effects of A/F ratio on the in-cylinder ionization can be isolated from other affecting factors by conducting tests on a constant volume combustion device in which the initial pressure and temperature can be well controlled. This results in a parabolic correlation of the ionization characteristics with the mixture equivalence ratio. Additionally the ionization characteristics show strong dependence on engine load and speed. Equivalence ratio characteristics during engine cranking and warm up are investigated, and a method for on-line calibration of ionization detection is discussed.
X