Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Journal Article

An Efficient, Durable Vocational Truck Gasoline Engine

2016-04-05
2016-01-0660
This paper describes the potential for the use of Dedicated EGR® (D-EGR®) in a gasoline powered medium truck engine. The project goal was to determine if it is possible to match the thermal efficiency of a medium-duty diesel engine in Class 4 to Class 7 truck operations. The project evaluated a range of parameters for a D-EGR engine, including displacement, operating speed range, boosting systems, and BMEP levels. The engine simulation was done in GT-POWER, guided by experimental experience with smaller size D-EGR engines. The resulting engine fuel consumption maps were applied to two vehicle models, which ran over a range of 8 duty cycles at 3 payloads. This allowed a thorough evaluation of how D-EGR and conventional gasoline engines compare in fuel consumption and thermal efficiency to a diesel. The project results show that D-EGR gasoline engines can compete with medium duty diesel engines in terms of both thermal efficiency and GHG emissions.
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Journal Article

On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle

2008-04-14
2008-01-1300
On-road comparisons were made between a federal reference method mobile emissions laboratory (MEL) and a portable emissions measurement system (PEMS) to support validation of the engine “Not To Exceed” (NTE) emissions design and to evaluate the accuracy of PEMS. Three different brake specific emissions calculation equations (methods) were used as part of this research, with method one directly using engine speed and torque, and methods two and three including ECM fuel consumption and carbon balance fuel consumption. The brake specific NOx emissions for the particular PEMS unit utilized in this program were consistently higher than those for the MEL. The brake specific (bs) NOx NTE deltas were +0.63±0.31 g/kW-h (0.47±0.23 g/hp-h), +0.55±0.17 g/kW-h (0.41±0.13 g/hp-h), and +0.54±0.17g/kW-h (0.40±0.13g/hp-h) for methods one, two, and three respectively.
Journal Article

Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle

2008-10-06
2008-01-2400
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes × 70° and 5 holes × 35°) with 103-μm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Journal Article

Lubricant Reactivity Effects on Gasoline Spark Ignition Engine Knock

2012-04-16
2012-01-1140
The performance and efficiency of spark ignited gasoline engines is often limited by end-gas knock. In particular, when operating the engine at high loads, combustion phasing is retarded to prevent knock, resulting in a significant reduction of engine efficiency. Since the invention of the spark ignition (SI) engine, much work has been devoted to improve and regulate fuel characteristics, such as octane number, to suppress engine knock. The auto-ignition tendency of the engine lubricant however, as described by cetane number (CN), has received little attention, as it has been assumed that engine lubricant effects on knock are insignificant, primarily due to low levels of average oil consumption. However, with modern SI engines being developed to operate at higher loads and closer to knock limits, the reactivity of engine lubricants can impact the knock behavior.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Technical Paper

EGR System Integration on a Pump Line-Nozzle Engine

1998-02-23
980181
The minimum oxides of nitrogen (NOx) emissions over the U.S. Federal Test Procedure (FTP) using exhaust gas recirculation (EGR) were investigated on a heavy-duty diesel engine featuring a pump-line-nozzle fuel injection system. Due to the technical merits of electronic fuel injection systems, most accounts of EGR system development for heavy-duty diesel engines have focused on these types of engines and not engines with mechanical fuel systems. This work details use of a high-pressure-loop EGR configuration and a novel, computer-controlled, EGR valve that allowed for optimizing the EGR rate as a function of speed and load on a 6L, turbo-charged/intercooled engine. Cycle NOx levels were reduced nearly 50 percent to 2.3 g/hp-hr using conventional diesel fuel and application of only EGR, but particulates increased nearly three-fold even with the standard oxidation catalyst employed.
Technical Paper

Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion

2007-04-16
2007-01-0191
Homogeneous charge compression ignition (HCCI) offers the potential for significant improvements in efficiency with a substantial reduction in emissions. However, achieving heavy-duty (HD) HCCI engine operation at practical loads and speeds presents numerous technical challenges. Successful expansion of the HCCI operating range to include the full range of load and speed must be accomplished while maintaining proper combustion phasing, control of maximum cylinder pressure and pressure rise rates, and low emissions of NOx and particulate matter (PM). Significant progress in this endeavour has been made through a collaborative research effort between Caterpillar and ExxonMobil. This paper evaluates fuel effects on HCCI engine operating range and emissions. Test fuels were developed in the gasoline and diesel boiling range covering a broad range of ignition quality, fuel chemistry, and volatility.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Performance Test Results of a New On Board Emission Measurement System Conformed with CFR Part 1065

2007-04-16
2007-01-1326
A new on-board portable emission measurement system (PEMS) for gaseous emissions has been designed and developed to meet CFR Part 1065 requirements. The new system consists of a heated flame ionization detector (HFID) for the measurement of total hydrocarbon, a heated chemiluminescence detector (HCLD) for the measurement of NOx, and a heated non-dispersive infra-red detector (HNDIR) for the measurement of CO and CO2. The oxygen interference and relative sensitivity of several hydrocarbon components have been optimized for the HFID. The CO2 and H2O quenching effect on the HCLD have been compensated using measured CO2 and H2O concentration. The spectral overlap and molecular interaction of H2O on the HNDIR measurement has also been compensated using an independent H2O concentration measurement. The basic performance of the new on-board emission measurement system has been verified accordingly with CFR part 1065 and all of the performances have met with CFR part 1065 requirement.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

Effect of Diesel and Water Co-injection with Real-Time Control on Diesel Engine Performance and Emissions

2008-04-14
2008-01-1190
A system for injection of diesel fuel and water with real-time control, or real-time water injection (RTWI), was developed and applied to a heavy-duty diesel engine. The RTWI system featured electronic unit pumps that delivered metered volumes of water to electronic unit injectors (EUI) modified to incorporate the water addition passages. The water and diesel mixed in the injector tip such that the initial portion of the injection contained mostly diesel fuel, while the balance of the injection was a water and diesel mixture. With this hardware, real-time cycle-by-cycle control of water mass was used to mitigate soot formation during diesel combustion. Using RTWI alone, NOx emissions were reduced by 42%. Using high-pressure-loop exhaust gas recirculation (EGR) and conventional diesel combustion with RTWI, the NOx was reduced by 82%.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
X