Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Journal Article

Multi-Objective Optimization of Transient Air-Fuel Ratio Limitation of a Diesel Engine Using DoE Based Pareto-Optimal Approach

2017-03-28
2017-01-0587
Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
Journal Article

Non-Intrusive Diagnostics of Oxygen Sensors

2017-03-28
2017-01-1688
The usage of the universal exhaust gas oxygen (UEGO) sensor to control the air-fuel ratio (AFR) in gasoline engines allowed to significantly improve the efficiency of the combustion process and reduce tailpipe emissions. The diagnostics of this sensor is very important to ensure proper operation and indicate the need for service when the sensor fails to accurately determine the AFR upstream of the catalyst. California air resources board (CARB) has imposed several legislations around the operation of the UEGO sensor and particularly when specific faults would cause tailpipe emissions to exceed certain limits. In this paper, the possible sensor faults are reviewed, and a non-intrusive diagnostics monitor is proposed to detect, identify and estimate the magnitude of the fault present. This paper extends the approach in [4] where technical details are emphasized and algorithm improvements are discussed.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

DEVELOPMENT OF A CNG ENGINE

1991-02-01
910881
Impending emissions regulations for diesel engines, specifically exhaust particulate emissions have caused engine manufacturers to once again examine the potential of alternative fuels. Much interest has centered around compressed natural gas (CNG) due to its potential for low particulate and NOx emissions. Natural gas engine development projects have tended toward the use of current gasoline engine technology (stoichiometric mixtures, closed-loop fuel control, exhaust catalysts) or have applied the results of previous research in lean-burn gasoline engines (high-turbulence combustion chambers). These technologies may be inappropriate for foreseeable emissions targets in heavy-duty natural gas engines.
Journal Article

Diagnostics of Individual Air Fuel Ratio Cylinder Imbalance

2017-03-28
2017-01-1684
Air Fuel Ratio (AFR) imbalance between engine cylinders remains one of the most challenging problems in powertrain systems diagnostics. California Air Resources Board(CARB) has started imposing specific requirements on automotive companies since 2011 that required the integration of on-board diagnostics (OBD) monitor for the detection and reporting of this type of powertrain malfunction. In this paper, some methodologies of AFR cylinder imbalance monitoring are investigated and a novel approach is proposed that shows reliable detection capability compared to the other methods. The proposed method requires certain conditions during deceleration fuel shutoff events to intrusively reactivate the cylinders and determine the imbalance condition. The method was evaluated on a V6 3.7L engine in an experimental Lincoln MKZ vehicle. Vehicle results are shown and discussed.
Technical Paper

Investigation of Alternative Combustion Crossing Stoichiometric Air Fuel Ratio for Clean Diesels

2007-07-23
2007-01-1840
Alternative combustion crossing stoichiometric air fuel ratio was investigated to utilize a 4-way catalyst system with LNT (lean NOx trap). The chemical mechanism of restricting soot formation reactions with low combustion temperature was combined with the physical mechanism of reducing smoke by lowering local equivalence ratio to enable low smoke rich and near rich combustion. A new combustion chamber for spatially and timely mixture formation phasing was developed to combine the two mechanisms and allow smooth EGR changing over a wide load range. Through this investigation, rich and near rich combustion to effectively utilize a 4-way catalyst system was realized. In addition, conditions suitable for LNT sulfur regeneration were realized from light to medium load.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

AN AIRFLOW-DOMINANT CONTROL SYSTEM FOR FUTURE DIESEL ENGINES

2007-07-23
2007-01-2070
An airflow-dominant control system was developed to provide precise engine and exhaust treatment control with low air fuel ratio alternative combustion. The main elements of the control logic include a real-time state observer for in-cylinder oxygen mass estimation, a simplified packaging scheme for all air-handling and fueling parameters, a finite state machine for control mode switching, combustion control models to maintain robust alternative combustion during transients, and smooth rich/lean switching during lean NOx trap (LNT) regeneration without post injection. The control logic was evaluated on a passenger car equipped with a 4-way catalyst system with LNT and was instrumental in achieving US Tier II Bin 5 emission targets with good drivability and low NVH.
Technical Paper

Development of a New Oxygen Storage Model for SIMTWC

2007-04-16
2007-01-1081
The high conversion efficiency required by the modern three-way catalyst (TWC) is dependent on oxygen storage material functionality and capacity. To successfully model a TWC, it is critical that the oxygen storage function in the catalyst be adequately represented. The original oxygen storage model (a simple “bucket” model) included in one of Ford's TWC models, SIMTWC, was developed for vehicle programs meeting LEV emission standards. Application of SIMTWC to test data from vehicles targeting more stringent emission standards, such as ULEV and PZEV, revealed limitations in the accuracy of the original bucket model. To address these limitations, an improved kinetic model of oxygen storage is being developed. This new model is more kinetically-detailed than the old model.
Technical Paper

An Adaptive Delay-Compensated PID Air Fuel Ratio Controller

2007-04-16
2007-01-1342
In this work, a discrete,time-based, delay-compensated, adaptive PID control algorithm for air fuel ratio control in an SI engine is presented. The controller operates using feedback from a wide-ranging Universal Exhaust Gas Oxygen (UEGO) sensor situated in the exhaust manifold. Time delay compensation is used to address the difficulties traditionally associated with the relatively long and time-varying time delay in the gas transport process and UEGO sensor response. The delay compensation is performed by computing a correction to the current control move based on the current delay and the corresponding values of the past control moves. The current delay is determined from the measured engine speed and load using a two dimensional map. In order to achieve good servo operation during target changes without compromising regulator performance a two degree of freedom controller design has been developed by adding a pre-filter to the air fuel ratio target.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

2009-04-20
2009-01-0584
Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
Technical Paper

Air Charge Estimation in Camless Engines

2001-03-05
2001-01-0581
An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

An On-Board Reductant Delivery System for Diesel Aftertreatment

2001-09-24
2001-01-3622
It has become evident that almost all diesel aftertreatment devices dealing with NOx and particulate matter (PM) controls require the addition of one or more reducing agents (reductants), such as diesel fuel, ammonia, or aqueous urea to enhance their efficiency and durability. These reductants can be used to catalytically convert NOx to N2, to enrich the air fuel ratio (A/F), or to increase temperatures for regenerating PM filters or for de-sulfating NOx traps. A number of injection methods have been developed recently to provide easy reductant addition. However, many of them may be cumbersome, costly, or ineffective. This paper describes a new reductant delivery system, which appears to minimize these shortcomings. To be effective, the manner of reductant injection into the exhaust is critical. First, the reductant must be added quickly to accommodate the fast transient operations.
Technical Paper

Development of a Methodology to Separate Thermal from Oil Aging of a Catalyst Using a Gasoline-Fueled Burner System

2003-03-03
2003-01-0663
Typically, an engine/dynamometer thermal aging cycle contains combinations of elevated catalyst inlet temperatures, chemical reaction-induced thermal excursions (simulating misfire events), and average air/fuel ratio's (AFR's) to create a condition that accelerates the aging of the test part. In theory, thermal aging is predominantly a function of the time at an exposure temperature. Therefore, if a burner system can be used to simulate the exhaust AFR and catalyst inlet and bed temperature profile generated by an engine running an accelerated aging cycle, then a catalyst should thermally age the same when exposed to either exhaust stream. This paper describes the results of a study that examined the aging difference between six like catalysts aged using the Rapid Aging Test (RAT) cycle (an accelerated thermal aging cycle). Three catalysts were aged using a gasoline-fueled engine aging stand; the other three were aged using a computer controlled burner system.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

A Phenomenological Control Oriented Lean NOx Trap Model

2003-03-03
2003-01-1164
Lean NOx Trap (LNT) is an aftertreatment device typically used to reduce oxides of nitrogen (NOx) emissions for a lean burn engine. NOx is stored in the LNT during the lean operation of an engine. When the air-fuel ratio becomes rich, the stored NOx is released and catalytically reduced by the reductants such as CO, H2 and HC. Tailpipe NOx emissions can be significantly reduced by properly modulating the lean (storage) and rich (purge) periods. A control-oriented lumped parameter model is presented in this paper. The model captures the key steady state and transient characteristics of an LNT and includes the effects of the important engine operating parameters. The model can be used for system performance evaluation and control strategy development.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
X