Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Brief Investigation of SCR High Temperature N2O Production

2012-04-16
2012-01-1082
Nitrous Oxide (N₂O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 (298-310 times more potent than carbon dioxide (CO₂)). As a result, any aftertreatment system that generates N₂O must be well understood to be used effectively. Under low temperature conditions, N₂O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N₂O formed by the thermal decomposition of ammonium nitrate. Ammonium nitrate and N₂O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO₂). This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO₂ ratio above 1. However, N₂O has also been observed at relatively high temperatures, in the region of 500°C.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

A Review of Diesel Particulate Filter Technologies

2003-06-23
2003-01-2303
Diesel particulate filters (DPF), known as traps in the mid-to late 1970s, were being developed for on-highway diesel applications. However, advanced engine design and in-cylinder engineering enabled diesel engines and vehicles to meet extremely low emission limits, including those of particulate matter (PM) without the need for DPF's or other auxiliary emission control devices. Late in 2000, the US EPA finalized its on-highway heavy-duty diesel emission standards, thus ending speculations regarding its stringency and establishing the lowest limits ever. The new nitric oxides (NOX) and PM limits are seen as technology-forcing. For NOX emissions, the debate rages on among the technical community about the merits of NOX adsorbers and urea selective catalytic reduction. On the other hand, there seems to be little doubt about DPF's as the technical solution for PM.
Technical Paper

Countering the Effects of Media Interferences and Background Contamination in Collection of Low Concentration Aldehydes and Ketones in Engine Exhaust with Dinitrophenylhydrazine (DNPH) Derivatization

2011-08-30
2011-01-2060
This paper discusses a method developed to counter the variability of media interferences for the measurement of aldehydes and ketones in automotive exhaust. Dinitrophenylhydrazine (DNPH) Derivatization Methodology for the collection of aldehyde and ketone compounds in vehicle exhaust has been in use for over thirty years. These carbonyl compounds are captured by passing diluted exhaust gas through a sample medium containing DNPH. The sampling medium can take the form of DNPH dispersed on a solid sorbent or as a DNPH solution in a solvent such as acetonitrile. Carbonyl compounds react readily to form DNPH derivatives which are stable and which absorb ultra-violet (UV) light, facilitating quantitative measurement. However, when the procedure was developed, emissions rates from vehicles were much higher than the current (2010) emissions levels.
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

Transient Emissions from Two Natural Gas-Fueled Heavy-Duty Engines

1993-10-01
932819
The use of compressed natural gas as an alternative to conventional fuels has received a great deal of attention as a strategy for reducing air pollution from motor vehicles. In many cases, regulatory action has been taken to displace diesel fuel with natural gas in truck and bus applications. Emissions results of heavy-duty transient FTP testing of two Cummins L10-240G natural gas engines are presented. Regulated emissions of non-methane hydrocarbons, total hydrocarbons, CO, NOx, and particulate were characterized, along with emissions of formaldehyde. The effects of air/fuel ratio adjustments on these emissions were explored, as well as the effectiveness of catalytic aftertreatment in reducing exhaust emissions. Compared to typical heavy-duty diesel engine emissions, CNG-fueled engines using exhaust aftertreatment have great potential for meeting future exhaust emission standards, although in-use durability is unproven.
Technical Paper

Design and Development of Catalytic Converters for Diesels

1992-09-01
921677
Improvements in diesel engine design to reduce particulate emissions levels, and a recent Environmental Protection Agency (EPA) ruling limiting the maximum sulfur content in diesel fuel, enhanced the viability of catalytic aftertreatment for this market. The Department of Emissions Research, Southwest Research Institute (SwRI), under contract from the Engine Manufacturers Association, (EMA), conducted a search to identify flow-through catalyst technologies available to reduce particulate emissions without trapping. The search revealed a variety of catalyst formulations, washcoats, and substrate designs which were screened on a light-duty diesel. Based on the performance of eighteen converters evaluated, several designs were selected to continue experimentation on a modern technology heavy-duty diesel engine.
Technical Paper

Achieving the 2004 Heavy-Duty Diesel Emissions Using Electronic EGR and a Cerium Based Fuel Borne Catalyst

1997-02-24
970189
The post-1998 diesel engine emissions challenge was put forth in July 1995 by the Statement of Principles (SOP) signed by the manufacturers of heavy duty engines, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Through this SOP, the signatories agreed to reduce the on-highway diesel engine NOx emissions by 50% from the legislated 1998 4.0 g/bhp.hr to 2.0 g/bhp.hr by the year 2004 with no increase over the 1998 particulate matter legislated level set at 0.1 g/bhp.hr. There are provisions in the SOP for the optional grouping of the gaseous hydrocarbons and NOx, limiting them at a combined value of 2.5 g/bhp.hr with a 0.5 g/bhp.hr hydrocarbon limit. In North America, particulate matter emissions standards were first imposed on heavy duty diesel engines in 1988. Since then, the NOx and particulate matter were balanced by taking advantage of the trade-off between the two pollutants inherent in diesel engines.
Technical Paper

Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

2005-10-24
2005-01-3793
Research has shown that there are many factors that affect the long-term performance of nitrogen oxides (NOx) control systems used in diesel engine applications. However, if the NOx emissions can be accurately monitored, it might be possible to restore performance by making adjustments to the control systems. This paper presents results from a study that tested the durability of 25 NOx sensors exposed to heavy-duty diesel exhaust for 6,000 hours. The study, conducted by the Advanced Petroleum-Based Fuels - Diesel Emission Controls (APBF-DEC) project, tested the sensors at various locations in the exhaust stream.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization

2000-06-19
2000-01-1968
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. As part of Tier 1 compliance requirements for EPA's Fuel Registration Program, a detailed chemical characterization of the transient exhaust emissions from three modern diesel engines was performed, both with and without an oxidation catalyst. This characterization included several forms of hydrocarbon speciation, as well as measurement of aldehydes, ketones, and alcohols. In addition, both particle-phase and semivolatile-phase PAH and nitro-PAH compounds were measured. Unregulated emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance

2000-06-19
2000-01-1967
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. Transient exhaust emissions from three modern diesel engines were measured during this study, both with and without an oxidation catalyst. Emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel. Regulated emissions and performance data are presented in this paper, while the results of a detailed chemical characterization of exhaust emissions are presented in a companion paper. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide, and particulate matter, with some increase in emissions of oxides of nitrogen on some engines.
Technical Paper

The Effect of a Turbocharger Clearance Control Coating on the Performance and Emissions of a 2-Stroke Diesel Engine

1999-10-25
1999-01-3665
Extensive efforts are being made to improve emissions from 2-stroke diesel engines. These improvements are primarily directed towards older model year engines with relatively high emissions compared with modern diesel engines. While most researchers focus their attention on engine design changes that promise substantial emission improvements, this work dealt with the turbocharger characteristics, especially as related to using internal coatings on both the compressor and turbine housings. Two identical turbochargers were tested on a Detroit Diesel 6V-92TA engine. One of the two turbochargers was left in its production configuration while the other was coated with a clearance control coating on the inside of the compressor and turbine housings. This coating led to a significant reduction in the tip clearance of both the compressor and turbine wheels.
Journal Article

Catalytic Formulation for NO2 Suppression and Control

2008-06-23
2008-01-1548
To counter the adverse impact on the formation of harmful unregulated emissions such as nitro-polycyclic aromatic hydrocarbons (NPAH), catalyst companies and researchers have been developing catalytic coatings that have the capability of suppressing the formation of NO2. NO2 is formed at low exhaust temperatures with potentially greater concentrations at part load engine operation. Haldor Topsoe, a catalyst company from Denmark, developed such a catalytic coating for DPFs. A sample was provided to Southwest Research Institute (SwRI) to conduct this research with a view of potentially improving NO2-suppressing formulations in the future. The Haldor Topsoe diesel particulate filter (DPF) with its novel coating was tested together with three other DPFs and the results confirmed the capability of this DPF to suppress the formation of NO2. This characteristic was apparent in all five engine test modes selected to cover the full engine operating range.
Book

Diesel Exhaust Aftertreatment 2000-2007

2008-04-01
Diesel engines continue to be widely used in heavy-duty commercial applications around the world, and they are also gaining popularity in light-duty applications such as passenger cars. With this comes increased concern for and regulation of diesel emissions - most notably particulate matter (PM) and nitric oxide (NOx) emissions. As the restrictions grow tighter, exhaust aftertreatment technologies must become more efficient and reliable. The 55 SAE technical papers in this compilation will guide engineers in their efforts to meet these new regulations, by summarizing the latest diesel exhaust aftertreatment technology for both light- and heavy-duty applications.
Book

Diesel Emissions and Their Control

2006-12-01
This book will assist readers in meeting today's tough challenges of improving diesel engine emissions, diesel efficiency, and public perception of the diesel engine. It can be used as an introductory text, while at the same time providing practical information that will be useful for experienced readers. This comprehensive book is well illustrated with more than 560 figures and 80 tables. Each main section is broken down into chapters that offer more specific and extensive information on current issues, as well as answers to technical questions.
X