Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Development of a Transient Duty Cycle for Large Nonroad SI Engines

2002-05-06
2002-01-1716
The Environmental Protection Agency (EPA) has proposed emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board require testing on a steady-state duty cycle. This paper presents the results of measurements to characterize normal operation from forklift trucks, which are the dominant application for these engines. In combination with previous measurements with a welder to represent constant-speed applications, the measured data were used to derive a composite 20-minute transient duty cycle for emission testing for all nonroad industrial spark-ignition engines.
Technical Paper

Emission Control Strategies for Small Utility Engines

1991-09-01
911807
Recent approval of emission standards for small utility engines by the California Air Resources Board(1)* suggests that substantial reductions in emissions from small utility engines will soon be required. While 1994 standards may be met with simple engine adjustments or modifications, 1999 standards are much more stringent and may require the use of catalysts in conjunction with other emission reduction technologies. Assessing the feasibility of candidate emission control strategies is an important first step. Various emission reduction technologies were applied to three different 4-stroke engines. Emission tests were conducted to determine the effectiveness of air/fuel ratio changes, thermal oxidation, exhaust gas recirculation, and catalytic oxidation with and without supplemental air. Results of these evaluations, along with implications for further work, are presented. One engine's emissions were reduced below the levels of 1999 ARB standards.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

Development of Low-Emissions Small Off-Road Engines

1999-09-28
1999-01-3302
The purpose of this project was to modify existing small off-road engines to meet ARB's originally proposed 1999 emissions standards. A particular point was to show that compliance could be attained without the need to redesign the base engines. Four high-sales volume, ARB-certified 1997 model engines were selected from the following categories: 1) handheld two-stroke engine, 2) handheld four-stroke engine, 3) non-handheld side-valve engine, and 4) a non-handheld overhead-valve engine. Engines were selected, procured, and baseline emission tested using applicable ARB test procedures. Appropriate emission control strategies were then selected and applied to the four engines. Emission reduction strategies used included air/fuel ratio optimization, and catalytic aftertreatment. Following the development of the four emission-controlled engines, final, certification-quality emissions tests were performed. All four engines met ARB's original 1999 Tier 2 emission standards after development.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
X