Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurement of the Instantaneous Distribution of Momentum in Diesel Injection Nozzle Fuel Jets

1996-10-01
962004
Because of its dominant role in diesel engine performance and emissions, the fuel injection process has become an area of very active research and development. It is now clear that location, shape, rate of development, and mass flow distribution within each fuel jet are all important in controlling fuel air mixing, wall interactions, combustion rate, and the resulting levels of emissions. The objective of this project was to develop an instrument for measurement of the instantaneous fuel mass and momentum distribution in the jets issuing from diesel injection nozzles. The goal was to develop an instrument concept that can be used in the laboratory for fundamental measurements, as well as a quality control system for use in manufacture of the injection nozzles. The concept of the instrument is based on the measurement of the instantaneous momentum of the fuel jet as it impacts on a surface equipped with pressure sensitive elements.
Technical Paper

Effects of Water on Distillate Fuel Lubricity

1998-10-19
982568
The continuing trend toward “cleaner” distillate fuels has prompted concerns about the lubricity characteristics of current and future distillates. Since many U.S. Navy ships utilize seawater-compensated fuel tanks to maintain the ship's trim, the Navy performed a detailed study in order to better understand the relationship between fuel water content and lubricity characteristics. The lubricity test methods, modified for this study, were ASTM D 6078 (SLBOCLE), D 6079 (HFRR), and D 5001 (BOCLE). The results indicated that, with few exceptions, there was generally no evidence of a correlation between the water content of the fuels and the corresponding lubricity measurements as determined by the laboratory tests.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

High-Pressure Injection Fuel System Wear Study

1998-02-23
980869
The critical particle size for a high-pressure injection system was determined. Various double-cut test dusts ranging from 0 to 5 μm to 10 to 20 μm were evaluated to determine which test dust caused the high-pressure system to fail. With the exception of the 0- to 5-μm test dust, all test dust ranges caused failure in the high-pressure injection system. Analysis of these evaluations revealed that the critical particle size, in initiating significant abrasive wear, is 6 to 7 μm. Wear curve formulas were generated for each evaluation. A formula was derived that allows the user to determine if the fuel filter effluent will cause harmful damage to the fuel system based on the number of 5-, 10-, and 15-μm particles per milliliter present. A methodology was developed to evaluate fuel filter performance as related to engine operating conditions. The abrasive methodology can evaluate online filter efficiency and associated wear in a high-pressure injection system.
Technical Paper

Filtration Requirements and Evaluation Procedure for a Rotary Injection Fuel Pump

1997-10-01
972872
A cooperative research and development program was organized to determine the critical particle size of abrasive debris that will cause significant wear in rotary injection fuel pumps. Various double-cut test dusts ranging from 0-5 to 10-20 μm were evaluated to determine which caused the pumps to fail. With the exception of the 0-5-μm test dust, all other test dust ranges evaluated caused failure in the rotary injection pumps. After preliminary testing, it was agreed that the 4-8-μm test dust would be used for further testing. Analysis revealed that the critical particle size causing significant wear is 6-7 μm. This is a smaller abrasive particle size than reported in previously published literature. A rotary injection pump evaluation methodology was developed. During actual operation, the fuel injection process creates a shock wave that propagates back up the fuel line to the fuel filter.
Technical Paper

EGR System Integration on a Pump Line-Nozzle Engine

1998-02-23
980181
The minimum oxides of nitrogen (NOx) emissions over the U.S. Federal Test Procedure (FTP) using exhaust gas recirculation (EGR) were investigated on a heavy-duty diesel engine featuring a pump-line-nozzle fuel injection system. Due to the technical merits of electronic fuel injection systems, most accounts of EGR system development for heavy-duty diesel engines have focused on these types of engines and not engines with mechanical fuel systems. This work details use of a high-pressure-loop EGR configuration and a novel, computer-controlled, EGR valve that allowed for optimizing the EGR rate as a function of speed and load on a 6L, turbo-charged/intercooled engine. Cycle NOx levels were reduced nearly 50 percent to 2.3 g/hp-hr using conventional diesel fuel and application of only EGR, but particulates increased nearly three-fold even with the standard oxidation catalyst employed.
Technical Paper

Compatibility of Elastomers and Metals in Biodiesel Fuel Blends

1997-05-01
971690
Alternative fuels are being evaluated in automotive applications in both commercial and government fleets in an effort to reduce emissions and United States dependence on diesel fuel. Vehicles and equipment have been operated using 100 percent biodiesel and various blends of biodiesel and diesel fuel in a variety of applications, including farming equipment and transit buses. This government study investigates the compatibility of four base fuels and six blends with elastomer and metallic components commonly found in fuel systems. The physical properties of the elastomers were measured according to American Society of Testing and Materials (ASTM) D 471, “Standard Test Method for Rubber Property-Effect of Liquids,” and ASTM D 412, “Standard Test Methods for Rubber Properties in Tension.” These evaluations were performed at 51.7°C for 0, 22, 70, and 694 hours. Tensile strength, hardness, swell, and elongation were determined for all specimens.
Technical Paper

A PC-Based Model for Predicting NOx Reductions in Diesel Engines

1996-10-01
962060
A menu-driven, PC-based model, ALAMO_ENGINE, has been developed to predict the nitrogen oxides (NOx) reductions in direct-injected, diesel engines due to exhaust gas recirculation (EGR), emulsified fuels, manifold or in-cylinder water injection, fuel injection timing changes, humidity effects, and intake air temperature changes. The approach was to use a diesel engine cycle simulation with detailed gas composition calculations for the intake and exhaust gases (including EGR, water concentration, fuel-type effects, etc.), coupled with a code to calculate stoichiometric, adiabatic flame temperatures and expressions that correlate measured NOx emissions with the flame temperature. Execution times are less than 10 seconds on a 486-66 MHz PC.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

Options for the Introduction of Methanol as a Transportation Fuel

1987-11-01
872166
It is generally recognized chat methanol is the best candidate for long-term replacement of petroleum-based fuels at soma time in the future. The transition from an established fuel to a new fuel, and vehicles that can use the new fuel, is difficult, however. This paper discusses two independent investigations of possible transition uses of methanol, which, when combined, may provide an option for introduction of methanol that takes advantage of the existing industrial base, and provides economic incentives to the consumer. The concept combines the intermediate blends of methanol and gasoline (50%-70% methanol) with the Flexible Fuel Vehicle. In addition to a possible maximum cost effectiveness, these fuels ease vehicle range restrictions due to refueling logistics, and mitigate cold starting problems, while at the same time providing most of the performance of the higher concentration blends.
Technical Paper

Development of a Heavy Duty On-Highway Natural Gas-Fueled Engine

1992-10-01
922362
A heavy-duty 320 kW diesel engine has been converted to natural gas operation. Conversion technology was selected to minimize costs while reaching NOx emissions goals of less than 3.2 g/kW-hr. Two engines are being converted using quiescent and high swirl combustion systems. The first engine with low swirl cylinder heads of the base diesel engine, and a combustion system developed for it was tested on a steady state cycle that has been shown to simulate the US heavy duty transient test cycle. It shows NOx emissions of 2.9 g/kW-hr and total HC emissions of 5.4 g/kW-hr. It is suspected that the HC emission is high because of high valve overlap. Experience with other similar engines suggests that non-methane HC emission is about 0.4-0.8 g/kW-hr. It is also expected that modified valve events and/or an oxidation catalyst can reduce HC emissions to much lower levels. The efficiency of the low swirl natural gas engine at this NOx level is 36 percent at rated condition.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

1978-02-01
780083
Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part II:Laborator Evaluation

1992-02-01
920824
This paper is the second of two that describe the effects of low-lubricity fuels on diesel injection pump performance. The first paper describes the primary failure mechanisms and wear processes in a number of failed pumps removed from both military and civilian vehicles that had been operated on Jet A-1 and diesel fuels. However, the multitude of unregulated parameters in practical operation renders quantitative comparison between different fuels and pump combinations impractical. This paper describes the degradation in pump performance and the wear processes associated with fuels of varying lubricity in the well-defined environment of a pump test stand. The test methodology concentrates on those areas previously demonstrated to be most susceptible to wear. The results indicate that pump durability is reduced by highly refined low-viscosity fuels, but may be successfully counteracted by either improved metallurgy or lubricity additives.
Technical Paper

Technology Demonstration of U.S. Army Ground Materiel Operating on Aviation Kerosene Fuel

1992-02-01
920193
A technology demonstration program was conducted by the U.S. Army to verify the feasibility of using aviation turbine fuel JP-8 in all military diesel fuel-consuming ground vehicles and equipment (V/E). Over 2,800 pieces of military equipment participated in a two and one-half year program accumulating over 2,621,000 total miles (4,219,810 km) using JP-8 in combat/tracked, tactical/wheeled, and transportation motor pool vehicles. Over 71,000 hours of operation were accumulated in diesel/turbine engine-driven generator sets using JP-8 fuel. Comparisons of various performance areas with baseline diesel fuel (DF-2) operation were made.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Impact of the Direct Injection of Liquid Propane on the Efficiency of a Light-Duty, Spark-Ignited Engine

2017-03-28
2017-01-0865
Liquefied petroleum gas (LPG) is commonly known as autogas when used as a fuel for internal combustion engines. In North America, autogas primarily consists of propane, but can contain small amounts of butane, methane and propylene. Autogas is not a new fuel for internal combustion engines, but as engine technology evolves, the properties of autogas can be utilized to improve engine and vehicle efficiency. With support from the Propane Education & Research Council (PERC), Southwest Research Institute (SwRI) performed testing to quantify efficiency differences with liquid autogas direct injection in a modern downsized and boosted direct-injected engine using the production gasoline fuel injection hardware. Engine dynamometer testing demonstrated that autogas produced similar performance characteristics to gasoline at part load, but could be used to improve brake thermal efficiency at loads above 9 bar Brake Mean Effective Pressure (BMEP).
Technical Paper

Dual Fuel Combustion of Propane in a Railroad Diesel Engine

1963-01-01
630450
Fuel conservationists will welcome this practicable proposal for converting railroads from diesel fuel to propane gas propulsion. Propane is no newcomer to the fuel family, but the advantages of economy, simplicity of operation, minimal maintenance, and extended life of equipment, as presented in this paper, show up its unexploited and extensive potential use in all mobile units. This careful study includes experimental results and data especially applied to railroad engines, even to conversion plans for existing engines that allows an interchangeable fuel system to accommodate present supply and variable cost factors in the United States.
Technical Paper

Diesel Fuel Injection Viewed as a Jet Phenomenon

1971-02-01
710132
The theory of submerged jets is applied quantitatively and qualitatively to diesel fuel sprays, based on simple considerations of the inherent invalidity of the single-particle “ballistic” approach. Approximate theoretical results are obtained for penetration velocity, penetration versus time, and fuel-air ratio within the spray. Modeling experiments are discussed and the jet approach used to explain two types of diesel combustion situations-fuel entrapment by insufficient penetration in the presence of air swirl and the efficacy of the MAN process.
Technical Paper

Diagnostics of Diesel Engines Using Exhaust Smoke and Temperature

1976-02-01
760833
An experimental sensor array that measures dynamic exhaust temperature and dynamic smoke for the purpose of diagnosing diesel engine fuel injection equipment was designed, built, and tested. The sensor array is portable and easily installed on truck tailpipes, and was tested using two 6V-53 Detroit Diesel engines. The dynamic temperature sensor is a very high response instrument capable of measuring changes in gas temperature in excess of 104°F/second. The dynamic smokemeter is an optical device designed to measure very low levels of light opacity in the smoke plume, with a response compatible with the engine firing frequency. Dynamic exhaust temperature data had more diagnostic significance than dynamic smoke in the detection of maximum power degrading fuel injection faults.
X