Refine Your Search

Topic

Search Results

Technical Paper

The Effects of Natural Aging on Fleet and Durability Vehicle Engine Mounts from a Dynamic Characterization Perspective

2001-04-30
2001-01-1449
Elastomers are traditionally designed for use in applications that require specific mechanical properties. Unfortunately, these properties change with respect to many different variables including heat, light, fatigue, oxygen, ozone, and the catalytic effects of trace elements. When elastomeric mounts are designed for NVH use in vehicles, they are designed to isolate specific unwanted frequencies. As the elastomers age however, the desired elastomeric properties may have changed with time. This study looks at the variability seen in new vehicle engine mounts and how the dynamic properties change with respect to miles accumulated on fleet and durability test vehicles.
Technical Paper

Measurement of the Instantaneous Distribution of Momentum in Diesel Injection Nozzle Fuel Jets

1996-10-01
962004
Because of its dominant role in diesel engine performance and emissions, the fuel injection process has become an area of very active research and development. It is now clear that location, shape, rate of development, and mass flow distribution within each fuel jet are all important in controlling fuel air mixing, wall interactions, combustion rate, and the resulting levels of emissions. The objective of this project was to develop an instrument for measurement of the instantaneous fuel mass and momentum distribution in the jets issuing from diesel injection nozzles. The goal was to develop an instrument concept that can be used in the laboratory for fundamental measurements, as well as a quality control system for use in manufacture of the injection nozzles. The concept of the instrument is based on the measurement of the instantaneous momentum of the fuel jet as it impacts on a surface equipped with pressure sensitive elements.
Technical Paper

Qualification of an Automatic Tire Inflation System for Long Haul Trucks

1994-11-01
942249
An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers, requires modification of the axles to direct air to the tires. The ATIS requires a drilled hole through the axle tube for the installation of a pneumatic fitting. The trucking industry expressed concern about the modification and its impact upon the axle structure, and the general durability of the system over a long period. A three-phase test program was developed and conducted to satisfy the concerns of the industry.
Technical Paper

Design Improvements of an Automatic Tire Inflation System for Long Haul Trucks

1995-11-01
952591
An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers underwent complete testing and evaluation in 1993/1994.1 Testing and evaluation included a field test of a prototype system and a controlled laboratory evaluation of the Rotary Union which is the only component subject to wear. The testing of the prototype system indicated that design improvements were necessary before the system could be installed in fleet operations. The design improvements were completed and field installation of production ATIS began. The design improvements were intended to improve overall system durability, decrease installation time, to have less effect on the axle structure than the original design, implement the use of SAE or DOT Approved pressure components and increase overall dependability of the system. ATIS systems have now been developed and tested for most domestic trailer axle configurations.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

Army Use of Near-Infrared Spectroscopy to Estimate Selected Properties of Compression Ignition Fuels

1993-03-01
930734
The U.S. Army has long identified the need for rapid, reliable methods for analysis of fuels and lubricants on or near the battlefield. The analysis of fuels and lubricants under battlefield or near-battlefield conditions requires that the equipment be small, portable, rugged, quick, and easy to use. Over the past 15 to 20 years, several test kits and portable laboratories have been developed in response to this need. One instrumental technique that has been identified as a likely candidate to meet this need is near-infrared spectroscopy (NIR). To evaluate NIR as a candidate, a set of 280 fuel samples was used. This sample set contained samples of diesel fuel grades 1 and 2, Jet A-l, JP-5, and JP-8. Inspection data were collected on all the fuels as sample size permitted. Each sample was then scanned using a near-infrared spectrometer. Data analysis, model building, and calibration were conducted using a software package supplied with the instrument.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Intricacies of SAE #2 Computerized Clutch Friction Durability Testing

1993-10-01
932847
This paper discusses the implications of computerizing the SAE #2 clutch friction durability tests that General Motors Corporation and Ford Motor Company require for automatic transmission fluid certification. There are three reasons for this paper. 1) Friction durability testing is a significant part of a much larger battery of tests needed to qualify a fluid. 2)There have been recent modifications concerning computerization of both the Ford and GM tests. 3) Because there are only two OEM qualified testing facilities, the details of certain testing intricacies in the areas of data acquisition, reduction and reporting may not be as understood as well as in other areas of automotive-based standardized testing. Formulators of automatic transmission fluid need to be aware of all details surrounding the collection and evaluation of the data that will result in the final test report.
Technical Paper

Electromagnetic Compatibility (EMC) in the Off-Highway Vehicle: Part IV Electronic Design for EMC

1993-09-01
932429
Electromagnetic compatibility (EMC) design considerations have a vital role in the proper functioning of the electronic circuits and systems of a modern off-highway vehicle (OHV). Careful planning is needed in developing the electronic systems that operate the various functions and tasks on these vehicles. Incorporation of EMC in a system design gives that system the quality of reliability; that is, the system will have reduced emissions and be less susceptible to radiated and conducted electromagnetic energy. This paper provides ideas, concepts, and guidelines that the designer of OHV control circuitry can use for incorporation of EMC at the beginning of a design project.
Technical Paper

Probabilistic Structural Analysis Methods

1988-04-01
880784
The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the structural response. This paper provides an overview of the methodology and discusses validation of modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as stress, displacement, natural frequencies, buckling loads, transient responses, etc. The structural analysis solution is in terms of the cumulative distribution function (CDF). Probabilistic structural analysis methods (PSAM) can be used to estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior.
Technical Paper

On-Line Oil Consumption Measurement and Characterization of an Automotive Gasoline Engine by SO2 Method

1992-02-01
920652
An on-line oil consumption measurement system using the SO2 tracer method has characterized automotive gasoline engine oil consumption under various engine operating conditions, including a 200-hour durability test. An oil consumption map of total engine, individual cylinder, and valve train was produced for various speed and load ranges under both steady-state and step-transient operating conditions. The effect of spark timing as an additional engine parameter on the oil consumption was also investigated. Oil consumption maps have enlightened the conventional understanding of oil consumption characteristics and broadened the areas of concern for control technologies. This paper reports the benefit of the on-line oil consumption measurement system, the result of oil consumption history over the durability test, discrete measurement of oil consumption contribution within the engine, and various oil consumption characteristics affected by engine operating conditions.
Technical Paper

Development of an I/M Short Emissions Test for Buses

1992-02-01
920727
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part II: Electromagnetic Immunity (EMI)

1992-09-01
921653
Electromagnetic immunity (EMI) for off-highway vehicles (OHV) is a vehicle's ability to resist radiated and conducted electromagnetic interference. Interference can originate within the OHV from the various systems designed to control its operational functions; external sources can also cause serious disruption of the electronic control mechanisms. Knowledge of how and where interferences originate gives the electronic designer insight into how to avoid the pitfalls which can cause malfunctions. Verification of designs through testing will ensure that safety and reliability are built into every OHV produced. This paper discusses the mechanisms that cause susceptibility of electronic circuits to electromagnetic interference, and presents test methods to help the designer improve circuit design and verify the immunity of the complete vehicle. This is the second in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle.
Technical Paper

Low Cost Bharat Stage 3 and 4 Heavy Duty Diesel Technology

2011-01-19
2011-26-0078
This paper reviews the technologies available for Bharat Stage 3 and 4 Heavy Duty on-highway emissions standards. Benchmarking data from several existing engines is used to explore the trade-offs between engine/vehicle cost and fuel consumption. Other implications of the available technologies, such as durability / reliability requirements, are also addressed. The paper provides recommendations for low cost approaches to meeting Bharat Stage 3 and 4 standards with good fuel consumption and reliability/ durability characteristics. A brief look ahead to future Bharat Stage 5 requirements is also provided.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Complementary Intersection Method (CIM) for System Reliability Analysis

2007-04-16
2007-01-0558
Researchers desire to evaluate system reliability uniquely and efficiently. Despite its strong technical demand, little progress has been made on system reliability analysis in the last two decades. Up to now, bound methods for system reliability prediction have been dominant. For system reliability bounds, the second order bound method gives fairly accurate prediction for system reliability assuming that the probabilities of second-order joint events are accurately obtained. Two primary challenges in system reliability analysis are evaluation of the probabilities of second-order joint events and no unique system reliability for design optimization. Firstly, the greatest technical demand is found in an accurate and efficient method to numerically evaluate the probability of a second-order joint event.
Technical Paper

Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method

2007-04-16
2007-01-0559
In the last decade, considerable advances have been made in reliability-based design optimization (RBDO). One assumption in RBDO is that the complete information of input uncertainties are known. However, this assumption is not valid in practical engineering applications, due to the lack of sufficient data. In practical engineering design, information concerning uncertainty parameters is usually in the form of finite samples. Existing methods in uncertainty based design optimization cannot handle design problems involving epistemic uncertainty with a shortage of information. Recently, a novel method referred to as Bayesian Reliability-Based Design Optimization (BRBDO) was proposed to properly handle design problems when engaging both epistemic and aleatory uncertainties [1]. However, when a design problem involves a large number of epistemic variables, the computation task for BRBDO becomes extremely expensive.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Innovative Six Sigma Design Using the Eigenvector Dimension-Reduction (EDR) Method

2007-04-16
2007-01-0799
This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems.
X