Refine Your Search




Search Results

Technical Paper

Control Strategies for a Series-Parallel Hybrid Electric Vehicle

Living in the era of rising environmental sensibility and increasing gasoline prices, the development of a new environmentally friendly generation of vehicles becomes a necessity. Hybrid electric vehicles are one means of increasing propulsion system efficiency and decreasing pollutant emissions. In this paper, the series-parallel power-split configuration for Michigan Technological University's FutureTruck is analyzed. Mathematical equations that describe the hybrid power-split transmission are derived. The vehicle's differential equations of motion are developed and the system's need for a controller is shown. The engine's brake power and brake specific fuel consumption, as a function of its speed and throttle position, are experimentally determined. A control strategy is proposed to achieve fuel efficient engine operation. The developed control strategy has been implemented in a vehicle simulation and in the test vehicle.
Technical Paper

Emissions Reduction Performance of a Bimetallic Platinum/Cerium Fuel Borne Catalyst with Several Diesel Particulate Filters on Different Sulfur Fuels

Results of engine bench tests on a 1998 heavy-duty diesel engine have confirmed the emissions reduction performance of a U.S. Environmental Protection Agency (EPA) registered platinum/cerium bimetallic fuel borne catalyst (FBC) used with several different catalyzed and uncatalyzed diesel particulate filters (DPF's). Performance was evaluated on both a 450ppm sulfur fuel (No.2 D) and a CARB 50ppm low sulfur diesel (LSD) fuel. Particulate emissions of less than 0.02g/bhp-hr were achieved on several combinations of FBC and uncatalyzed filters on 450ppm sulfur fuel while levels of 0.01g/bhp-hr were achieved for both catalyzed and uncatalyzed filters using the FBC with the low sulfur CARB fuel. Eight-mode steady state testing of one filter and FBC combination with engine timing changes produced a 20% nitrogen oxide (NOx) reduction with particulates (PM) maintained at 0.01g/bhp-hr and no increase in measured fuel consumption.
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

Analysis of a Novel Two-Stroke Engine Scavenging Arrangement: The Neutron Engine

A unique two-stroke engine design is investigated in which fresh mixture is introduced into the cylinder through a valve in the piston crown, and exhausted through peripheral cylinder ports. The engine behaves as a free-piston engine through a portion of the cycle when the piston lifts off the valve seat. The fresh air jet rising along the cylinder centerline effectively displaces the burned gases with little mixing of the two streams. The concept was analyzed by a combination of dynamic cycle simulation and prediction of the in-cylinder flow characteristics by multidimensional modeling. The cycle simulation program considered the dynamics of the piston during its free motion as well as under the kinematic constraints of the crank system. A zero-dimensional thermodynamic model of the cylinder was used to predict cycle pressure and temperature, indicated power, fuel consumption, and flow in and out of the cylinder.
Technical Paper

Emissions From Snowmobile Engines Using Bio-based Fuels and Lubricants

Snowmobile engine emissions are of concern in environmentally sensitive areas, such as Yellowstone National Park (YNP). A program was undertaken to determine potential emission benefits of use of bio-based fuels and lubricants in snowmobile engines. Candidate fuels and lubricants were evaluated using a fan-cooled 488-cc Polaris engine, and a liquid-cooled 440-cc Arctco engine. Fuels tested include a reference gasoline, gasohol (10% ethanol), and an aliphatic gasoline. Lubricants evaluated include a bio-based lubricant, a fully synthetic lubricant, a high polyisobutylene (PIB) lubricant, as well as a conventional, mineral-based lubricant. Emissions and fuel consumption were measured using a five-mode test cycle that was developed from analysis of snowmobile field operating data.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel

This paper describes the ongoing homogeneous charge compression ignition (HCCI) research being carried out at Southwest Research Institute (SwRI). Summaries of the results of testing to date are presented and discussed. HCCI is a process whereby a premixed charge of diesel fuel and air is admitted into the power cylinder and compression ignited. Ignition occurs homogeneously throughout the cylinder. HCCI reduces flame temperatures and oxides of nitrogen (NOx) emissions. The lack of fuel rich zones within the cylinder eliminates soot formation (1-pull Bosch smoke numbers of 0, 5-pull = 0). The limits of HCCI start of combustion timing are defined by knock before top dead center (BTDC) and misfire after top dead center (ATDC). Stable and repeatable HCCI combustion has been demonstrated over a wide range of air-fuel (A/F) ratios, intake temperatures, compression ratios (CR), exhaust gas recirculation (EGR) rates, and for two fuels. A/F ratios of 14 to 80 are possible.
Technical Paper

Analysis of a Hybrid Powertrain for Heavy Duty Trucks

Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
Technical Paper

An Unthrottled Gaseous Fuel Conversion of a 2-Stroke Diesel Engine

The feasibility of converting a conventional unthrottled 2-stroke diesel engine to gaseous fuel was investigated. The development work was performed in two phases. In phase 1 the conversion concepts were built and tested on a single-cylinder engine. In phase 2 one of these was put into effect in a 6-cyl (DDA 6V-71) engine. The design concept with the most promise includes a divided combustion chamber utilizing a gas inlet valve in each chamber and a spark plug ignition source located in the prechamber. The concept has the potential of reducing the exhaust emissions well below the levels now existing in commercial diesels without exhaust smoke and odor and with equivalent fuel consumption and horsepower, as demonstrated in the single-cylinder conversion. Further development work remains to be done to perfect the concept for the multi-cylinder engine.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Technical Paper

Technology Demonstration of U.S. Army Ground Materiel Operating on Aviation Kerosene Fuel

A technology demonstration program was conducted by the U.S. Army to verify the feasibility of using aviation turbine fuel JP-8 in all military diesel fuel-consuming ground vehicles and equipment (V/E). Over 2,800 pieces of military equipment participated in a two and one-half year program accumulating over 2,621,000 total miles (4,219,810 km) using JP-8 in combat/tracked, tactical/wheeled, and transportation motor pool vehicles. Over 71,000 hours of operation were accumulated in diesel/turbine engine-driven generator sets using JP-8 fuel. Comparisons of various performance areas with baseline diesel fuel (DF-2) operation were made.
Technical Paper

Emissions and Fuel Usage by the U. S. Truck and Bus Population and Strategies for Achieving Reductions

This paper presents an approach to modeling the United States truck and bus population. A detailed model is developed that utilizes domestic factory sales figures combined with a scrappage factor as a building block for the total population. Comparison with historical data for 1958-1970 shows that the model follows trends well for intermediate parameters such as total vehicle miles per year, total fuel consumption, scrappage, etc. Fuel consumption and HC, CO, NO2, CO2 and particulate matter emissions for gasoline and diesel engines are of primary interest. The model details these parameters for the time span 1958-2000 in one-year increments. For HC and CO, truck and bus emissions could equal or exceed automobile emissions in the early 1980s, depending on the degree of control. Three population control strategies are analyzed to determine their effects on reducing fuel consumption or air pollution in later years.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

The Development of the Pumpless Gas Engine Concept

The major events in the development of a “pumpless” gas engine concept are related. The immediate objective of the subject program was to develop a combustion system for natural gas fueled engines which, when compared with conventional gas engines, would be operationally simpler and easier to maintain with no appreciable penalty in specific fuel consumption. The pumpless gas principle was successfully demonstrated on a single-cylinder, 2-cycle engine. The concept was then extended, with the aid of combustion photography, to a single-cylinder, 4-cycle laboratory engine. The feasibility of the concept was further demonstrated by the conversion of a commercially available 4-cycle, 4-cyl diesel engine.
Technical Paper

Piston-Turbine-Compound Engine — A Design and Performance Analysis

Exhaust heat utilization for internal combustion engines has centered around turbosupercharging in recent years, neglecting the promising field of compounding a piston engine with a gas turbine in which, unlike turbocharging, turbine power is fed back to the engine crankshaft. The piston engine can cope with high gas pressure and temperature, whereas the gas turbine can efficiently utilize the energy at relatively low pressure and temperature and large volume flows. By compounding, this-piston engine will handle the high pressure, high temperature phase of the combustion cycle and extend the expansion ratio of the gases to atmospheric pressure by completing the low pressure, low temperature phase in the gas turbine. The marriage of the two engines will result in an outstanding power package with the highest thermal efficiency possible.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

Fuel Consumption of Crawler Tractors

In this paper, a mathematical model is used to determine the fuel-consuming characteristics of a typical crawler tractor with bulldozer under various opera ting regimes. The results are used to suggest various methods to reduce tractor fuel consumption.