Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Vehicle Design for Robust Driveline NVH Due to Imbalance and Runout Using a Monte Carlo Process

2011-05-17
2011-01-1546
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles with higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. This paper focuses on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance and runout in rotating components can be unavoidable or costly to control.
Technical Paper

Multidisciplinary Design and Prototype Development of a Very Small Remotely-Piloted Reconnaissance Airplane

1997-10-01
975547
The multidisciplinary design optimization (MDO) methodology is employed for the design of a very small remotely-piloted airplane for a reconnaissance mission. The airplane configuration established at the conceptual design level is optimized for minimum size subject to performance, stability, weight, and dimension constraints. The constrained optimization problem is solved using the extended interior penalty function method based on finite-difference approximations of the sensitivity derivatives. The MDO-based design is validated both analytically and through the development and flight testing of a prototype airplane.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Development of A Dynamic Modeling Framework to Predict Instantaneous Status of Towing Vehicle Systems

2017-03-28
2017-01-1588
A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
Technical Paper

Determination of Interior NVH Levels from Tire/Wheel Variations using a Monte Carlo Process

2011-05-17
2011-01-1580
Variability in design (e.g. tolerance), material, manufacturing, or other sources of variation causes significant variation in vehicle noise, vibration and harshness (NVH) response. This leads to a higher percentage of produced vehicles with higher levels of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly to the original equipment manufacturers (OEM). Measures must be taken to insure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. We will focus on some aspects of design variations in a tire/wheel assembly that should be considered in the design process. In particular, certain materials (e.g. rubber) are known to have variation in stiffness that is either unavoidable or proven costly if tighter control is desired.
Technical Paper

Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

2016-04-05
2016-01-0308
The Powertrain Analysis and Computational Environment (PACE) is a forward-looking powertrain simulation tool that is ready for a High-Performance Computing (HPC) environment. The code, written in C++, is one actor in a comprehensive ground vehicle co-simulation architecture being developed by the CREATE-GV program. PACE provides an advanced behavioral modeling capability for the powertrain subsystem of a conventional or hybrid-electric vehicle that exploits the idea of reusable vehicle modeling that underpins the Autonomie modeling environment developed by the Argonne National Laboratory. PACE permits the user to define a powertrain in Autonomie, which requires a single desktop license for MATLAB/Simulink, and port it to a cluster computer where PACE runs with an open-source BSD-3 license so that it can be distributed to as many nodes as needed.
Technical Paper

Development of Beam Elements for Crashworthiness Analysis of Thin-Walled Beam Structures

2016-04-05
2016-01-0401
In this paper, a new beam element is developed for the purpose of capturing thin-walled beam’s collapse mechanisms under dynamic load such as impact load and will be validated in the next phase. Such beam element can be used to create simplified finite element models for crashworthiness analysis and simulation and, therefore, will significantly reduce the modeling effort and computing time. The developed beam element will be implemented into LS-DYNA and validated through crashworthiness analysis and simulation. This paper introduces the approach of deriving the new element formulation.
Technical Paper

Analysis Method for the Design of Compensated Pitot-Static Probes for Use on General Aviation Aircraft

1995-05-01
951431
Pitot-static probes are used on aircraft to measure total and static pressure, necessary for airspeed and altitude information. Aerodynamic compensation is often desired to obtain accurate freestream static pressure readings when the instrument is located near regions of disturbed flow generated by the aircraft's forebody. In this study, computational fluid dynamics (CFD) has been used to analyze surface pressures on the forebody, the probe, and on forebody/probe configurations for a transonic business jet. Compensation techniques and validation cases are presented. Results indicate that CFD can be effective in locating static pressure ports in a region of zero pressure coefficients (Cp).
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
X