Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Technology for Low Emission, Combustion Noise and Fuel Consumption on Diesel Engine

1994-03-01
940672
In order to reduce exhaust emission and combustion noise and to improve fuel consumption, the effects of the combustion system parameters of a diesel engine, such as injection pressure, injection nozzle hole diameter, swirl ratio, and EGR rate on exhaust emissions, combustion noise and fuel consumption are investigated and described in detail by analyzing rate of heat release, needle valve lift and injection pressure. Based on these results, reduction of exhaust emission and combustion noise and improvement of fuel consumption are described in the latter part of this paper. These results are shown as follows. The smaller nozzle hole diameter is effective for reducing smoke and PM, and by optimizing the injection timing and swirl ratio, NOx can also be reduced. In addition to the above, by applying EGR and higher injection pressure it is possible to improve the fuel consumption with the remaining low NOx and PM.
Technical Paper

New Quiescent Combustion System for Heavy–Duty Diesel Engines to Overcome Exhaust Emissions and Fuel Consumption Trade–Off

2000-06-19
2000-01-1811
In the next few years, the USA, EU, and Japan plan to introduce very stringent exhaust emissions regulations for heavy–duty diesel engines, in order to enhance the protection air quality. This builds upon the heavy–duty diesel engine exhaust emissions regulations already in effect. At the same time, improvement in fuel consumption of heavy–duty diesel engines will be very important for lowering vehicle operating costs, conserving fossil fuel resources, and reduction of CO2 (greenhouse gas) levels. This paper presents a detailed review of a quiescent combustion system for a heavy–duty diesel engine, which offers breakthrough performance in terms of the exhaust emissions – fuel consumption trade–off, compared with the more conventional swirl supported combustion system. This conclusion is supported by experimental results comparing quiescent and swirl supported versions of various combustion system configurations.
X