Refine Your Search

Topic

Search Results

Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Control Method of Autonomous Vehicle Considering Compatibility of Riding Comfort and Vehicle Controllability

1990-08-01
901486
This paper describes a control strategy for autonomous vehicles in an intelligent vehicle/highway system. The control concept aims at the compatibility of passenger riding comfort and vehicle controllability. The main subject of this paper is lateral control of vehicles. In order to analyze riding comfort, we have experimented on the lateral riding comfort during a lane change. It was found that the riding comfort is mainly related to the jerk more than the acceleration, and that the trajectory pattern is important. According to the experimental results, a motion control system was designed. We found through the computer simulation and the experiment with an autonomous test vehicle that comfortable ride is realized along with system stability. Lastly, in order to apply this strategy to the longitudinal direction, we have experimented on the longitudinal acceleration with the test vehicle. The results shows that the same strategy is applicable to the longitudinal direction.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

The 1.5-Liter Vertical Vortex Engine

1992-02-01
920670
A stratified-charge lean-burn engine is newly developed for the purpose of energy saving and carbon dioxide reduction to minimize the global warming. The engine, named MVV(Mitsubishi Vertical Vortex)engine, is based on the unique vertical vortex technology which realizes stable combustion even with lean mixture without any additional device. And it also has another feature of “all range air-to-fuel ratio feedback control system” utilizing linear air-to-fuel ratio sensor. This paper describes various technologies developed in this engine.
Technical Paper

A Particulate Trap System Using Electric Heating Regeneration for Small Trucks

1992-02-01
920141
A trap system has been developed that collects particulate using two small filters and regenerates alternately by electric heaters. This system contains a new idea in detection of the amount of particulate accumulation in the filters. The system counts the amount using a particulate accumulation rate map which is a function of the engine load and speed. In vehicle test with this trap system, the particulate collection efficiency and the regeneration efficiency were proved to be high enough for practical use. The test results also showed that the shutdown performance of the route switch valve greatly influenced the regeneration efficiency.
Technical Paper

A New Oxygen Storage Componented Oxygen Sensor for the Emission Reductions of the Three-Way Catalyst System

1990-10-01
902120
A new prototype oxygen storage componented oxygen sensor has been developed which shows significant emission reductions of a 3-way catalyst system. This sensor is composed of ceria, as an oxygen storage component and supported pellets as a buffer layer surrounding the protective coating of the sensor element. This sensor offers a more rapid response than conventional ones under lean and rich fuel mixture excursions, which is caused by CO or O2 electrode poisoning.
Technical Paper

Transient Characteristics of Torque Converter-Its Effect on Acceleration Performance of Auto-Trans. Equipped Vehicles

1990-02-01
900554
In previous studies(1)(2), the acceleration performance of vehicles equipped with torque converter has been analysed with the assumption that the converter characteristic was under continued steady-state. However, in case of sharp acceleration of the fluid flow in the converter from inactive flow condition, which would occur at wide-open throttle starting, it is not possible to accurately analyse the vehicle performance at immediately after starting if the converter characteristic is assumed to remain under steady-state condition. In this paper, the transient phenomenon in the converter is verified by applying the theory of angular momentum and the concept of energy balance through the converter elements providing with a dynamic-model for the driveline. The present study has clarified the effect of the transient converter characteristic, at sharp starting, on the acceleration performance.
Technical Paper

Development and Application of the Road Profile Measuring System

1993-03-01
930257
A high-performance road profile measuring system has developed. The measuring system consists of four laser displacement sensors and an optical speed sensor. It has the advantage of making high-accuracy measurements during a regular run, on a public road, and without any traffic restriction. The measurement is hardly affected by bouncing and pitching motions of the vehicle. The four displacement sensors are arranged at unequal intervals in the direction of vehicle. A road profile is calculated from sensor outputs. This paper describes not only the development of this unique measuring system but also its application to a vehicle behavior. Significant measurements of typical and peculiar public roads in Japan and Northern Europe by the measuring vehicle have been performed for the last few years. The features of these roads are described by the power spectrum densities and the profiles.
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

A Study on the Effects of the Active Yaw Moment Control

1995-02-01
950303
This paper presents a new torque distribution system-“Right/Left Torque Control System”, aimed at improving a vehicle's cornering properties by using yaw moment control. The torque transfer mechanisms of this system have been analyzed. Also, a yaw moment control algorithm using yaw rate feedback control has been designed. Next, vehicle cornering properties were evaluated using numerical simulation developed from data taken from an actual vehicle. As a result, improvements were achieved in the maneuverability and stability of a vehicle during cornering.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Development of Compact, Water-Cooled Engine K2AS

1983-09-12
831300
Mitsubishi has developed the new, compact, water-cooled vertical type 2-cylinder diesel engine model K2AS and brought it to market in spring of '82. The K2AS is a small-sized engine of 451 cc total displacement and 10HP/3600 rpm maximum output. Its weight of 58 kg is light enough to use this diesel engine for various machines which have formerly been driven by gasoline engines. The well matched combustion chamber and injection system realize low fuel consumption, low noise and easy engine starting. High durability is also assured by various kinds of reliability evaluation. Features of K2AS are outlined below.
Technical Paper

Mitsubishi's Compound Intake System Engine

1985-02-01
850035
Mitsubishi Motors Corporation presents the newly-developed 2-liter engine, which we have named SIRIUS DASH. The SIRIUS DASH engine, with its compound intake system, features great performance in both high and low speed ranges while keeping fuel consumption low. The compound intake system operates the 3 valves in 2 stages. When engine speed is low, just one intake valve is used, but when engine speed increases, two intake valves are used. And to make this engine truly extraordinary, we added a turbocharger with an intercooler, and equipped the whole thing with a total electonic control system. Generally, high performance engines which have large inlet ports and high speed type valve timing enabling them to intake sufficient air for high performance at high speeds. The problem is here that when speed is dropped, combustion becomes unstable at the expense of torque and fuel consumption.
Technical Paper

Structural Joint Stiffness of Automotive Body

1988-02-01
880550
An analysis of the static behavior of T-shaped joint is presented. Advanced testings by laser holography and infrared ray stress wave analyzers verified the surface deformation and the stress concentration of joint area, which are very important factors of thin-walled joint stiffness. The definition of structural joint stiffness is attempted, and the relationship between structural joint stiffness and sizes(dimension) of the constructing members is obtained in case of a thin-walled T-shaped member with rectangular cross section. The parametric study to accomplish weight reduction, while maintaining the necessary structural joint stiffness, is described in case of Rocker to Center pillar. The numerical analysis of body structure considering the structural joint stiffness shows better accuracy as compared with the analysis with the joint assumed rigid.
Technical Paper

Active Control for Body Vibration of F.W.D. Car

1986-03-01
860552
A Vehicle Vibration Control System by Active Control has been developed. The experimental results using a 4-cylinder gasoline engine installed in a car showed that at the position of the driver's seat, the acceleration of the vibration was reduced by 16 dB. This system operates stably and at low cost because of having a feedforward system, so many applications can be expected in the near future as methods for vehicle vibration reduction.
Technical Paper

Profiles of Automobiles in the Year 2000

1989-09-01
892008
There have been various predictions made concerning the future profile for automobiles but such predictions have in many cases been based solely on anticipated advances in technology. In presenting a profile for automobiles in the year 2000, the writers predict the evolution and transfiguration of automobiles, taking both phases in the changing social environment and technical trends into account. Interest in automobiles is expected to shift from hardware to software and then to humanware (i.e. more emphasis is placed on the relationship with human beings), and automobiles will evolve and transfigure reflecting these changes.
Technical Paper

Improvements of Exhaust Gas Emissions and Cold Startability of Heavy Duty Diesel Engines by New Injection-Rate-Control Pump

1986-09-01
861236
In order to investigate the effects of high injection pressure on engine performance and exhaust emissions, some experimental high injection pressure in-line pumps were made and tested. Increasing fuel spray momentum by high injection pressure could reduce smoke emission, but excessive increase in injection pressure was found not so effective in further reducing smoke emission. Accordingly, a high injection pressure should be accomplished within the low engine speed range a feature that has been very difficult to achieve for a conventional in-line pump. An electronic controlled injection-rate-control pump with a variable prestroke mechanism can provide higher injection pressure in low engine speed range and advances injection timing in high engine speed range. This pump can improve fuel economy in low engine speed range and emissions (smoke and particulate) over transient FTP for HDE's.
Technical Paper

Study on Practicality of Electric Vehicle “i-MiEV” under Severe Weather

2011-05-17
2011-39-7241
Mitsubishi Motors Corporation succeeded in mass production of the electric vehicle “i-MiEV” which features leading-edge technologies epitomized by lithium-ion battery. The EV was released into the Japanese market in July 2009 and the European market in January 2011. In order to be used all over the world, the EV has to be practical and durable even under severe weather of extremely cold or extremely hot regions. In this paper we report some results of the tests conducted under extremely cold weather as well as extremely hot weather. From the test results the validity of the vehicle control system and the practicality of the EV are verified.
X