Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Journal Article

Accelerated and Integrated Real Time Testing Process Based on Two Universal Controllers on Rapid Controller Prototyping

2008-04-14
2008-01-0285
Rapid Controller Prototyping (RCP) is an efficient method for design & development of ECU (Electronic Controller Unit) at early stage. Usually, RCP requires firstly performing Software-in-the-loop simulation and then connecting universal controller (e.g. MicroAutoBox) to real controlled system for testing of controller functionality. During this process, it is likely that some problems related to signal configuration and real time characteristics occur and consequently give rise to unexpected results, e.g., sensor signals or controlling signals produce large deviation and possibly damage components of real system under severe condition. On the other hand, it cannot make sure that the real time characteristics of designed controller are suitable just after applying Software-in-the-loop simulation.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Journal Article

Closed-Form Stress Intensity Factor Solutions for Spot Welds in Various Types of Specimens

2008-04-14
2008-01-1141
Closed-form stress intensity factor solutions at the critical locations of spot welds in four types of commonly used specimens are obtained based on elasticity theories and fracture mechanics. The loading conditions for spot welds in the central parts of four types of specimens are first examined. The resultant loads on the weld nugget and the self-balanced resultant loads on the lateral surface of the central parts of the specimens are then decomposed into various types of symmetric and anti-symmetric parts. Closed-form structural stress and stress intensity factor solutions for spot welds under various types of loading conditions are then adopted from a recent work of Lin and Pan to derive new closed-form stress intensity factor solutions at the critical locations of spot welds in the four types of specimens.
Journal Article

Role of Predictive Engineering in the Design Evolution of a Thermoplastic Fender for a Compact SUV

2011-04-12
2011-01-0768
Automotive fenders is one such example where specialized thermoplastic material Noryl GTX* (blend of Polyphenyleneoxide (PPO) + Polyamide (PA)) has successfully replaced metal by meeting functional requirements. The evolution of a fender design to fulfill these requirements is often obtained through a combination of unique material properties and predictive engineering backed design process that accounts for fender behavior during the various phases of its lifecycle. This paper gives an overview of the collaborative design process between Mitsubishi Motors Corporation and SABIC Innovative Plastics and the role of predictive engineering in the evolution of a thermoplastic fender design of Mitsubishi Motors Corporation's compact SUV RVR fender launched recently. While significant predictive work was done on manufacturing and use stage design aspects, the focus of this paper is the design work related to identifying support configuration during the paint bake cycle.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Component Mode Synthesis for Substructures with Non-Matching Interfaces

2007-05-15
2007-01-2333
When performing vibration analysis of complex vehicle structures, it is often important to be able to evaluate the effects of design changes in one or more substructures (e.g., for design optimization). It may also be convenient to allow different components to be modeled independently by different groups or organizations. For both cases, it is inevitable that some substructures will have non-matching finite element meshes at the interface where they are physically connected. Thus, a key challenge is to be able to handle the dynamic assembly of components with non-matching meshes and the subsequent global vibration analysis in a systematic and efficient manner. To tackle this problem, the enhancement of component mode synthesis methods for handling finite element models partitioned into non-matching substructures is considered in this paper. Some existing methods are reviewed, and new methods are developed.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

2007-10-29
2007-01-4034
Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.
Technical Paper

Emission Reduction Technologies Applied to High-Speed Direct Injection Diesel Engine

1998-02-01
980173
In this paper, emissions reduction technologies applied to high-speed direct injection (HSDI) diesel passenger car engines to meet the stricter exhaust emission legislation are described. To reduce smoke, the F.I.E. has been improved by using a radial-piston distributor pump which delivers fuel-injection-pressure up to 120MPa. Cooled exhaust gas re-circulation (EGR) system and increase in volume ratio of the combustion chamber has made it possible to increase EGR ratio and reduced nitrogen oxides (NOx) and smoke simultaneously. Furthermore, improvements in the oxidation catalyst activating temperature reduces PM at lower exhaust gas temperatures. As a result of applying these technologies, a clean and economical HSDI diesel engine for passenger cars, which complies with Japanese '98 exhaust emissions legislation and has better fuel economy than indirect injection (IDI) diesel engines (above 15%), has been developed.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

New DOC for Light Duty Diesel DPF System

2007-07-23
2007-01-1920
A new state of the art DOC (Diesel Oxidation Catalyst) having superior light-off and exothermic activity for forced regeneration compared to conventional Pt base passive DOC, was investigated for LDD application. The DOC uses the latest Pt/Pd technology resulting cost effective DPF system. The newly developed DOC demonstrated improved catalytic activities from Pt only DOC in model gas or engine bench tests. In this study, DOC at early development stage showed excellent light-off activity in model gas and engine bench test compared to conventional Pt only DOC, however, it showed “extinction” phenomenon which is one of the deactivation mode while the post injection and it was observed when post injection operation was done at lower DOC inlet temperatures, e.g. below 250 C. Temperature profiles along diameter and length into DOC bed while active regeneration suggested extinction would be caused by fouling of supplied hydrocarbons derived from diesel fuel.
Technical Paper

A Study of Transmission fluid Performance on Fuel Economy

2007-07-23
2007-01-1980
To apply a fuel economy performance to AT&CVT fluid for common use (hereinafter AT/CVT fluid) and manual transmission fluid, by optimizing fluid viscosity, a fundamental study was investigated. Generally, it is well known that the viscosity of polymer-added transmission fluids is gradually reduced, due to deterioration of the viscosity index improver caused by shear stress. An excessive viscosity reduction causes an operation failure or damage to the transmission. Considering above factor, the authors focused attention on the potential of a low viscosity formulation to improve fuel efficiency by reducing an internal stirring-resistance of the transmission. Also from the viewpoint of friction characteristics, the performance of a base oil was studied. Utilizing the EHL (Elast-Hydrodynamic Lubrication) tester [1] and vehicle tests, the performance of base oils was evaluated for the fluid development.
Technical Paper

Validation of a Hybrid Finite Element Formulation for Mid-Frequency Analysis of Vehicle Structures

2007-05-15
2007-01-2303
The hybrid Finite Element Analysis (hybrid FEA) has been developed for performing structure-borne computations in automotive vehicle structures [1, 2 and 3]. The hybrid FEA method combines conventional FEA with Energy FEA (EFEA). Conventional FEA models are employed for modeling the behavior of the stiff members in a system. Appropriate damping and spring or mass elements are introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. The component mode synthesis method is combined with analytical solutions for determining the driving point conductance at joints between stiff and flexible members and for defining the properties of the concentrated elements which represent the flexible members when analyzing the stiff components.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Development of High-Performance PP Masterbatch for Interior Parts

2007-08-05
2007-01-3733
The authors have developed a high-performance talc masterbatch (hereinafter HPTMB) to achieve sufficient flexural modulus and impact resistance at the same time using inexpensive conventional PP as a base resin. Highly compressed fine talc and elastomers were selected as the filler and the impact resistance improver by considering their dispersion in the molded parts. The mixing process was also optimized. In order to stabilize impact resistance after molding, several elastomers were selected based on molecular weights and melting points. The developed HPTMB showed excellent balanced properties for instrument panels using inexpensive conventional PP as a base resin. The HPTMB is applied to the instrument panel of a Mitsubishi mini car. This technology will enable us to reduce the material cost by consolidating automotive interior plastic materials as well as by using available conventional PP.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
X