Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Microwave Enhanced Freeze Drying of Solid Waste

2007-07-09
2007-01-3266
A Microwave Enhanced Solid Waste Freeze Drying Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Operating under vacuum, microwave power provides the energy necessary for sublimation of ice contained within the waste. This water vapor is subsequently collected as relatively pure ice on a Peltier thermoelectric condenser as it travels en route to the vacuum pump. In addition to stabilization via dehydration, microwave enhanced Freeze Drying reduces the microbial population (∼90%) in the waste.
Technical Paper

Development and Testing of a Microwave Powered Solid Waste Stabilization and Water Recovery System

2006-07-17
2006-01-2182
A Microwave Powered Solid Waste Stabilization and Water Recovery Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Using microwave power, water present in the solid waste is selectively and rapidly heated. Liquid phase water flashes to steam and superheats. Hot water and steam formed in the interior of waste particles create an environment that is lethal to bacteria, yeasts, molds, and viruses. Steam contacts exposed surfaces and provides an effective thermal kill of microbes, in a manner similar to that of an autoclave. Volatilized water vapor is recovered by condensation.
Technical Paper

Magnetically Assisted Gasification of Solid Wastes: Comparison of Reaction Strategies

2005-07-11
2005-01-3081
Gradient magnetically assisted fluidized bed (G-MAFB) methods are under development for the decomposition of solid waste materials in microgravity and hypogravity environments. The G-MAFB has been demonstrated in both laboratory and microgravity flight experiments. In this paper we summarize the results of gasification reactions conducted under a variety of conditions, including: combustion, pyrolysis (thermal decomposition), and steam reforming with and without oxygen addition. Wheat straw, representing a typical inedible plant biomass fraction, was chosen for this study because it is significantly more difficult to gasify than many other typical forms of solid waste such as food scraps, feces, and paper. In these experiments, major gasification products were quantified, including: ash, char, tar, carbon monoxide, carbon dioxide, methane, oxygen, and hydrogen.
X