Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Protein-based Sensors for Environmental Monitoring

2006-07-17
2006-01-2177
Biomolecules exhibit specific binding and high affinity for their ligands. These properties can be exploited to produce sensitive, specific, real-time sensors for analytes that cannot be readily monitored by other methods. Several technologies for environmental monitoring using proteins are currently being developed. We discuss specific challenges to practical application of a family of protein-based sensors derived from bacterial periplasmic binding proteins. We also present recent work to address these challenges.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Enabling Strategic Flight Deck Route Re-Planning Within A Modified ATC Environment: The Display of 4-D Intent Information on a CSD

2000-10-10
2000-01-5574
The concept of free flight introduces many challenges for both air and ground aviation operations. Of considerable concern has been the issue of moving from centralized control and responsibility to decentralized control and distributed responsibility for aircraft separation. Data from capacity studies suggest that we will reach our capacity limits with ATC centralized control within the next 2 decades, if not sooner. Based on these predictions, research on distributed air-ground concepts was under taken by NASA Advanced Air Transportation Technologies Program to identify and develop air-ground concepts in support of free-flight operations. This paper will present the results of a full mission air-ground simulation conducted in the NASA Crew Vehicle Systems Research Facility. The purpose of the study was to evaluate the effect of advanced displays with “intent” (4-D flight plans) information on flight crew and ATC performance during limited free-flight operations.
Technical Paper

Potential for Recovery of Plant Macronutrients from Space Habitat Wastes for Salad Crop Production

2001-07-09
2001-01-2350
Crop production in space habitats is currently under consideration as part of an advanced life support system. The scenarios for crop production vary depending on the mission objectives. For a mission scenario such as the International Space Station (ISS), current efforts propose only salad crop production. However in order to grow salad crops, there is a need for plant nutrients (elements) such as N, P, K, Ca, etc., which constitutes about 10% of dry weight of the plant. Nitrogen and potassium are the major elements needed by salad crops and currently require resupply on Station. However, it is feasible that these macronutrients could be recovered through the waste materials generated by the crew. The proposed concepts are non-oxidative and simple in design. This paper considers the potential for reclaiming macronutrients from urine and gray water concentrates from water recovery systems.
Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Development and Testing of a Breadboard Compactor for Advanced Waste Management Designs

2007-07-09
2007-01-3267
Waste management is a vital function of spacecraft life support systems as it is necessary to meet crew health and safety and quality of life requirements. Depending on the specific mission requirements, waste management operations can include waste collection, segregation, containment, processing, storage and disposal. For the Crew Exploration Vehicle (CEV), addressing volume and mass constraints is paramount. Reducing the volume of trash prior to storage is a viable means to recover habitable volume, and is therefore a particularly desirable waste management function to implement in the CEV, and potentially in other spacecraft as well. Research is currently being performed at NASA Ames Research Center to develop waste compaction systems that can provide both volume and mass savings for the CEV and other missions.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

2000-07-10
2000-01-2247
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Technical Paper

Artificial Gravity for Mars Missions: The Different Design and Development Options

2000-07-10
2000-01-2246
One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. It is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

Air and Water Recycling System Development for a Long Duration Lunar Base

2006-07-17
2006-01-2191
Stored air and water will be sufficient for Crew Exploration Vehicle visits to the International Space Station and for brief missions to the moon, but an air and water recycling system will be needed to reduce cost for a long duration lunar base and for exploration of Mars. The air and water recycling system developed for the International Space Station is substantially adequate but it has not yet been used in operations and it was not designed for the much higher launch costs and reliability requirements of moon and Mars missions. Significant time and development effort, including long duration testing, is needed to provide a flawless air and water recycling system for a long duration lunar base. It would be beneficial to demonstrate air and water recycling as early as the initial lunar surface missions.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Navigation in a Challenging Martian Environment Using Data Mining Techniques

2005-10-03
2005-01-3383
This paper discussed how data mining techniques could give advantage to the robot in navigation, in terms of speed. The input of our navigation system is the sensory information collected by the robot's equipped landmark sensor and infra-red sensor, the process of the system is the proposed data mining technique, and the output of the system is the execution of the moving direction in a 2D Martian environment. The results demonstrate efficient goal-oriented navigation using data mining techniques.
Technical Paper

Machine Learning for Rocket Propulsion Health Monitoring

2005-10-03
2005-01-3370
This paper describes the initial results of applying two machine-learning-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an experimental rocket engine test stand located at NASA Stennis Space Center. The paper describes four candidate anomalies detected by the two algorithms.
Technical Paper

Machine Learning for Detecting and Locating Damage in a Rotating Gear

2005-10-03
2005-01-3371
This paper describes a multi-disciplinary damage detection methodology that can aid in detecting and diagnosing a damage in a given structural system, not limited to the example of a rotating gear presented here. Damage detection is performed on the gear stress data corresponding to the steady state conditions. The normal and damage data are generated by a finite-difference solution of elastodynamic equations of velocity and stress in generalized coordinates1. The elastodynamic solution provides a knowledge of the stress distribution over the gear such as locations of stress extrema, which in turn can lead to an optimal placement of appropriate sensors over the gear to detect a potential damage. The damage detection is performed by a multi-function optimization that incorporates Tikhonov kernel regularization reinforced by an added Laplacian regularization term as used in semi-supervised machine learning. Damage is mimicked by reducing the rigidity of one of the gear teeth.
Technical Paper

Micro-Flying Robotics in Space Missions

2005-10-03
2005-01-3405
The Columbia Accident Investigation Board issued a major recommendation to NASA. Prior to return to flight, NASA should develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components. This inspection plan should take advantage of advanced non-destructive inspection technology. This paper describes a non-intrusive technology with a micro-flying robot to continuously monitor inside a space vehicle for any stress related fissures, cracks and foreign material embedded in walls, tubes etc.
X