Refine Your Search

Topic

Author

Search Results

Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Integrated Use of Data Mining and Statistical Analysis Methods to Analyze Air Traffic Delays

2007-09-17
2007-01-3836
Linear regression is the primary data analysis method used in the development of air traffic delay models. When the data being studied does indeed have an underlying linear model, this approach would produce the best-fitting model as expected. However, it has been argued by ATM researchers [Wieland2005, Evans2004] that the underlying delay models are primarily non-linear. Furthermore, the delays being modeled often depend not only on the observable independent variables being studied but also on other variables not being considered. The traditional regression approach alone may not be best suited to study these type of problems. In this paper, we propose an alternate methodology based on partitioning the data using statistical and decision tree learning methods. We then show the utility of this model in a variety of different ATM modeling problems.
Technical Paper

Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

1997-07-01
972311
A habitat for housing up to 32 Tenebrionid, black body beetles (Trigonoscelis gigas Reitter) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures in a Beetle Kit allows for ad lib movement of the beetle as well as ventilation of the beetle enclosure via an externally operated hand pump. Two Beetle Kits were launched on STS-84 (Shuttle-Mir Mission-06) on May 15, 1997 and were transferred to the Priroda module of the Russian Mir space station on May 18 as part of the NASA/Mir Phase 1 Science Program. Following the Progress collision with Spektr on June 25, the Kits were transferred to the Kristall module. The beetles will remain on Mir for approximately 135 days.
Technical Paper

Supporting Constellation Mission Training from Crew to Controllers

2008-06-29
2008-01-2106
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

2009-07-12
2009-01-2447
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. ISS flight controller certification has evolved to include a balanced focus on the development of team performance and technical expertise. The latest challenge the ISS team faces is how to certify an ISS flight controller to the required level of effectiveness in one year. Space Flight Resource Management (SFRM) training, a NASA adapted variant of Crew Resource Management (CRM), is expanding the role of senior flight controllers as mentors to help meet that challenge. This paper explains our mentoring approach and discusses its effectiveness and future applicability in promoting SFRM/CRM skills.
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

2009-07-12
2009-01-2513
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

Training Pilots for In-flight Icing: Cognitive Foundations for Effective Learning and Operational Application

2003-06-16
2003-01-2141
Aviation training has remained largely untouched by decades of development in cognitive science. In aviation, people must be trained to perform complicated tasks and make good operational decisions in complex dynamic environments. However, traditional approaches to professional aviation training are not well designed to accomplish this goal. Aviation training has been based mainly on relatively rigid classroom teaching of factual information followed by on-the-job mentoring. This approach tends to compartmentalize knowledge. It is not optimal for teaching operational decision-making, and it is costly in time and personnel. The effectiveness of training can be enhanced by designing programs that support the psychological processes involved in learning, retention, retrieval, and application. By building programs that are informed by current work in cognitive science and that utilize modern technological advances, efficient training programs can be created.
Technical Paper

An Extensible Information Grid for Risk Management

2003-09-08
2003-01-3067
This paper describes recent work on developing an extensible information grid for risk management at NASA — a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management — a closed-loop iterative process for explicit risk management, program/project management — a proactive process that includes risk management, and mishap management — a feedback loop for learning from historical risks that ‘escaped’ other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, ‘schema-less’ mapping of XML, and secure server-mediated communication using standard protocols.
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

Considerations in the Development of Habitats for the Support of Live Rodents on the International Space Station

2001-07-09
2001-01-2228
The animal habitat under development for the International Space Station (ISS) provides a unique opportunity for the physiological and biological science community to perform controlled experiments in microgravity on rats and mice. This paper discusses the complexities that arise in developing a new animal habitat to be flown aboard the ISS. Such development is incremental and moves forward by employing the past successes, learning from experienced shortcomings, and utilizing the latest technologies. The standard vivarium cage on the ground can be a very simple construction, however the habitat required for rodents in microgravity on the ISS is extremely complex. This discussion presents an overview of the system requirements and focuses on the unique scientific and engineering considerations in the development of the controlled animal habitat parameters. In addition, the challenges to development, specific science, animal welfare, and engineering issues are covered.
Technical Paper

Potential for Recovery of Plant Macronutrients from Space Habitat Wastes for Salad Crop Production

2001-07-09
2001-01-2350
Crop production in space habitats is currently under consideration as part of an advanced life support system. The scenarios for crop production vary depending on the mission objectives. For a mission scenario such as the International Space Station (ISS), current efforts propose only salad crop production. However in order to grow salad crops, there is a need for plant nutrients (elements) such as N, P, K, Ca, etc., which constitutes about 10% of dry weight of the plant. Nitrogen and potassium are the major elements needed by salad crops and currently require resupply on Station. However, it is feasible that these macronutrients could be recovered through the waste materials generated by the crew. The proposed concepts are non-oxidative and simple in design. This paper considers the potential for reclaiming macronutrients from urine and gray water concentrates from water recovery systems.
Technical Paper

Water Reclamation Technology Development for Future Long Range Missions

1992-07-01
921351
This paper covers the development of computer simulation models of the Vapor Compression Distillation (VCD) process, the Super Critical Water Oxidation (SCWO) process, and two versions of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) process. These process level models have combined into two Integrated Water Reclamation Systems (IWRS). Results from these integrated models, in conjunction with other data sources, have been used to develop a preliminary comparison of the two systems. Also discussed in this paper is the development of a Vapor Phase Catalytic Ammonia Reduction teststand and the development of a new urine analog for use with the teststand and computer models.
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

A Simple Project Process Model for Estimating and Controlling Cost and Schedule

2006-07-17
2006-01-2189
This work presents a simple and useful project process model. The project model directly shows how a few basic parameters determine project duration and cost and how changes in these parameters can improve them. Project cost and duration can be traded-off by adjusting the work rate and staffing level. A project's duration and cost can be computed on the back of an envelope, with an engineering calculator, or in a computer spreadsheet. The project model can be simulated dynamically for further insight. The project model shows how and why projects can greatly exceed their expected duration and cost. Delays and rework requirements may create work feedback loops that increase cost and schedule in non-proportional and non-intuitive ways.
Technical Paper

Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

1994-06-01
941288
The Spacelab Life Sciences-2 (SLS-2) mission provided scientists with the unique opportunity of obtaining inflight rodent tissue and blood samples during a 14-day mission flown in October, 1993. In order to successfully obtain these samples, Ames Research Center's Space Life Sciences Payloads Office has developed an innovative, modular approach to packaging the instruments used to obtain and preserve the inflight tissue and blood samples associated with the hematology experiments on SLS-2. The design approach organized the multitude of instruments into 12 different 5x6x1 inch kits which were each used to accomplish a particular experiment functional objective on any given day during the mission. The twelve basic kits included blood processing, isotope and erythropoietin injection, body mass measurement, and microscope slides.
Technical Paper

Microgravity Flight - Accommodating Non-Human Primates

1994-06-01
941287
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases.
Technical Paper

The NASA Ames Controlled Environment Research Chamber - Present Status

1994-06-01
941488
The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew.
X