Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Comparative Space Suit Boot Test

In applications that require space-suited crewmembers to traverse rough terrain, boot fit and mobility are of critical importance to the crewmember's overall performance capabilities. Current extravehicular activity (EVA) boot designs were developed for micro-gravity applications, and as such, incorporate only minimal mobility features. Recently three advanced space suit boot designs were evaluated at the National Aeronautics and Space Administration Johnson Space Center (NASA/JSC). The three designs included: 1) a modified Space Shuttle suit (Extravehicular Mobility Unit or EMU) boot, 2) the Modified Experiment Boot designed and fabricated by RD & PE Zvezda JSC, and 3) a boot designed and fabricated by the David Clark Company. Descriptions of each configuration and rationale for each boot design are presented.