Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Tractor and Trailer Torsional Compliance and Fill Level of Tanker Trailers on Rollover Propensity During Steady Cornering

Understanding the parameters which influence the tendency for a heavy truck to exhibit rollover is of paramount importance to the trucking industry. Multiple parameters influence the vehicle’s motion, and the ability to determine how each affects the vehicle as a system would be an indispensable tool for the design of such vehicles. To be able to perform such predictions and analysis, models and a computer simulation were created to allow the examination of changes in design parameters in such vehicles. The vehicle model was originally developed by Law [1] and presented in Law and Janajreh [2]. The model was extended further by Lawson [3, 4] to include (a) the effects of the torsional compliance of both the tractor and trailer, and (b) tanker trailers with various levels of liquid fill. In the present paper, both the tractor and trailer compliances were studied independently to determine their influences on the rollover stability of the vehicle.
Technical Paper

Development of an Expert System for Race Car Driver & Chassis Diagnostics

Race teams compete at a level where fractions of a second separate the finishers. Consequently, teams devote significant resources to gain a competitive edge. Limitations on track time and high track rental prices dictate efficiency in testing. Thus, proper use of data acquisition and computer aided engineering tools is essential. These tools can be used to quickly analyze test data and serve as the basis for recommendations for changes in chassis setup and driver technique. This project describes the further development of such a tool that can be used to analyze and diagnose the control inputs of a driver as well as diagnose the overall balance of the chassis (i.e., understeer and oversteer). This tool is an “expert system” (implemented in MATLAB) that provides an understanding of the effects of both chassis setup changes and driver steering, braking, and throttle control inputs on overall lap times.
Technical Paper

Ride Dynamics and Pavement Loading of Tractor Semi-Trailers on Randomly Rough Roads

An investigation of the vertical dynamics of a tractor semi-trailer traversing a random road profile was conducted. This paper presents the development of a 14 degree-of-freedom (DOF), dynamic ride model of a tractor semi-trailer. It is based on work previously conducted by Vaduri and Law [1] and Law et al [2]. The DOFs include: (a) vertical displacements of each of the five axles, the tractor frame, the engine on its mounts, the cab on its suspension, and the driver's seat; (b) pitch displacements of the trailer with respect to the tractor, the cab, and the rigid tractor frame; and, (c) the first bending or beaming modes of the tractor and trailer frames. The model also incorporates suspension friction, and tire non-uniformities. The simulation of the model is conducted using MATLAB software.
Technical Paper

Optimization to Improve Lateral Stability of Tractor Semi-Trailers During Steady State Cornering

Decreasing the propensity for rollover during steady state cornering of tractor semi-trailers is a key advantage to the trucking industry. This will be referred to as “increasing the lateral stability during steady state cornering” and may be accomplished by changes in design and loading variables which influence the behavior of a vehicle. To better understand the effects of such changes, a computer program was written to optimize certain design variables and thus maximize the lateral acceleration where an incipient loss of lateral stability occurs. The vehicle model used in the present investigation extends that developed by Law [1] and presented in Law and Janajreh [2]. The original model included the effects of tire flexibility, nonlinear roll-compliant suspensions, and fifth wheel lash. This model was modified to include (a) additional effects of displacement due to both lateral and vertical tire flexibility, and (b) provisions for determining “off-tracking”.
Technical Paper

Effects of Tire and Vehicle Design Characteristics on Rollover of Tractor Semi-Trailers

Understanding the effects of tire and vehicle properties on the rollover propensity of tractor semi-trailer trucks is essential. The major objective of the project described by this paper was to develop a simplified computational tool that can be used to understand and predict the effects of various tire characteristics and truck design parameters on rollover under steady cornering and non-tripped conditions. In particular, this tool may be used to help understand the basic mechanisms governing rollover propensity of trucks equipped with New Generation Wide Single tires as contrasted with conventional tires. Effects of tire flexibility, roll-compliant suspensions, fifth - wheel lash and nonlinear suspension characteristics are included in the model and are presented below. Design parameter data used as input to the model were obtained from Michelin Americas Research and Development Corporation.