Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

2007-07-09
2007-01-3244
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

Deep Space Mission Radiation Shielding Optimization

2001-07-09
2001-01-2326
Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In the present report, we present methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of lunar and Mars missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints.
Technical Paper

Shield Optimization in Simple Geometry for the Gateway Concept

2002-07-15
2002-01-2332
The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs.
Technical Paper

Inter-Crew Shielding Against a Solar Particle Event in L1

2002-07-15
2002-01-2335
All but a small fraction of human space radiation exposure has been in Low Earth Orbit (LEO) where significant protection from extraterrestrial ionizing radiation is provided as a result of its deflection in the Earth's magnetic field. The placement of a manned outpost at the L1 Lagrange Point could mark the first long-term venture into a “deep space” radiation environment, giving rise to the associated problems of long-term space exposure. One of the first issues to address is providing protection within an L1 station from a large solar particle event. A safe haven area could be used over the duration of the event or one may consider the sleep stations where it is already necessary to have added shielding. The surrounding bodies of other closely packed crewmembers in such a shelter are expected to provide a significant fraction of a crewmember's total shielding.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

2006-07-17
2006-01-2106
On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

NASA Evaluation of Type II Chemical Depositions

1993-09-01
932582
Recent findings from NASA Langley tests to define effects of aircraft Type II chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32-96 km/hr (20-60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

1996-11-18
962273
Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

A Time Dependent Model for the Lunar Radiation Environment

2005-07-11
2005-01-2831
In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon’s radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions, namely on the Apollo 12 from the Oceanus Procellarum landing site. Subsurface environments like lava tubes have been considered in the analysis.
Technical Paper

Elements Affecting Runway Traction

1974-02-01
740496
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Runway traction is so affected by the interaction of these elements that it becomes an impossible task to discuss the effects of each element individually. For this reason, this paper discusses runway traction under the general headings of dry, wet and flooded, and snow and ice conditions. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
Technical Paper

Flow Rate and Trajectory of Water Spray Produced by an Aircraft Tire

1986-10-01
861626
One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.
Technical Paper

Theoretical Investigations, and Correlative Studies for NLF, HLFC, and LFC Swept Wings at Subsonic, Transonic and Supersonic Speeds

1987-10-01
871861
The results of theory/experiment correlative studies at subsonic and supersonic Mach numbers are presented in this paper. These studies were conducted by using theoretical design tools consisting of the Method of Characteristics, newly-developed integral compressible boundary-layer methods for infinitely swept wings, namely, laminar boundary layer with suction, prediction of neutral instability and transition due to amplification of Tollmien-Schlichting (T.S.) waves and crossflow (C.F.), and a method for predicting separating turbulent boundary-layer characteristics. Results of correlations have indicated that the present integral boundary layer methods are quite successful in predicting transition phenomenon both at transonic and supersonic speeds.
X