Refine Your Search

Topic

Search Results

Technical Paper

Controls for Agility Research in the NASA High-Alpha Technology Program

1991-09-01
912148
Emerging advanced controls technology will allow future generation fighter aircraft to aggressively maneuver at high angles-of-attack. Currently there is a need to develop flight-validated design methodologies and guidelines to effectively integrate this technology into future aircraft. As part of the NASA High-Alpha Technology Program (HATP), advanced controls technology is being developed in ground-based research and demonstrated using the High-Alpha Research Vehicle (HARV) as a flying testbed. Efforts are in progress to develop flight validated control law design methodologies and design guidelines which could be used to effectively exploit the capabilities provided by advanced controls at high angles of attack. This paper outlines this research effort and summarizes the design process and preliminary methodologies and guidelines developed to date.
Technical Paper

Radiation Protection Effectiveness of a Proposed Magnetic Shielding Concept for Manned Mars Missions

1990-07-01
901343
The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.
Technical Paper

Flight Tests Using Data Link for Air Traffic Control and Weather Information Exchange

1990-09-01
901888
Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.
Technical Paper

26 X 6.6 Radial-Belted Aircraft Tire Performance

1991-09-01
912157
Preliminary results from testing of 26 X 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, on going joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving three different tire sizes. The 26 X 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 X 6.6 tire vertical stiffness properties are also presented and discussed.
Technical Paper

Multirole Cargo Aircraft Options and Configurations

1979-02-01
791096
A future requirements and advanced market evaluation study indicates derivatives of current wide-body aircraft, using 1980 advanced technology, would be economically attractive through 2008, but new dedicated airfreighters incorporating 1990 technology, would offer little or no economic incentive. They would be economically attractive for all payload sizes, however, if RD and T costs could be shared in a joint civil/military arrangement. For the 1994-2008 cargo market, option studies indicate Mach 0.7 propfans would be economically attractive in trip cost, aircraft price and airline ROI. Spanloaders would have an even lower price and higher ROI but would have a relatively high trip cost because of aerodynamic inefficiencies. Dedicated airfreighters using propfans at Mach 0.8 cruise, laminar flow control, or cryofuels, would not provide any great economic benefits.
Technical Paper

Manned Space Station Environmental Control and Life Support System Computer-Aided Technology Assessment Program

1984-07-01
840957
A description is given of a computer program developed at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) for the assessment of manned space station environmental control and life support systems (ECLSS) technology. The program methodology along with the data base and mission model variables are given for 17 candidate technologies that show potential for supplying metabolic oxygen and water on manned space missions. The data base includes metabolic design loads associated with crew activity, engineering design parameters for each technology option, and cost data required for candidate life cycle cost comparisons. The method for ranking the candidate options in order to provide recommendations for space station application or subsequent development is presented.
Technical Paper

Environmental Control and Life Support Systems Technology Options for Space Station Application

1985-07-01
851376
Seventeen Environmental Control and Life Support System technology options to provide metabolic oxygen and water to sustain a multiperson crew on Space Station missions have been evaluated. The options included state-of-the-art technologies as well as advanced technologies that offer the potential for improvements in Environmental Control and Life Support Systems performance. The methodology for candidate technology recommendations was based upon specific assessment criteria as functions of prelaunch development activities and postlaunch operational considerations. The electrochemical depolarized cell option for carbon dioxide concentration, the sabatier option for carbon dioxide reduction, the static feed water electrolysis option for metabolic oxygen recovery, and vapor compression distillation and multifiltration options for waste water recovery were recommended.
Technical Paper

Leading-Edge Design for improved Spin Resistance of Wings Incorporating Conventional and Advanced Airfoils

1985-10-01
851816
Discontinuous wing leading-edge droop designs have been evaluated as a means of modifying wing autorotative characteristics and thus improving airplane spin resistance. Addition of a discontinuous outboard wing leading-edge droop to three typical light airplanes having NACA 6-series wing sections produced significant improvements in stall characteristics and spin resistance. Wind tunnel tests of two wings having advanced natural laminar flow airfoil sections indicated that a discontinuous leading-edge droop can delay the onset of autorotation at high angles of attack without adversely affecting the development of laminar flow at cruise angles of attack.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Powered Nasp-Like Configuration in Ground Effect

1989-09-01
892312
An investigation was conducted in the Langley 14- By 22-Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a powered generic NASP-like configuration in ground effect. The model was a simplified configuration consisting of a triangular wedge forebody, a rectangular mid-section which housed the propulsion simulation system, and a rectangular wedge aftbody. Additional model components included a delta wing, exhaust flow deflectors, and aftbody fences. Six-component force and moment data were obtained over an angle of attack range from −4° to 18° while model height above the tunnel floor was varied from 1/4 inch to 6 feet. Variations in freestream dynamic pressure, from 10 psf to 80 psf, and engine ejector pressure yielded a range of thrust coefficients from 0 to 0.8. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow.
Technical Paper

Stability Characteristics of a Conical Aerospace Plane Concept

1989-09-01
892313
Wind tunnel investigations were conducted as part of an effort to develop a stability and control database for an aerospace plane concept across a broad range of Mach numbers. The generic conical design used in these studies represents one of a number of concepts being studied for this class of vehicle. The baseline configuration incorporated a 5° cone forebody, a 75.96° delta wing, a 16°leading-edge sweep deployable canard and a centerline vertical tail. Tests were conducted in the following NASA-Langley facilities spanning a Mach range of 0.1 to 6:30- by 60-Foot Tunnel,14- by 22-Foot Subsonic Tunnel, Low Turbulence Pressure Tunnel, National Transonic Facility, Unitary Plan Wind Tunnel, and the 20 Inch Mach 6 Tunnel. Data were collected for a number of model geometry variations and test conditions in each facility. This paper highlights some of the key results of these investigations pertinent to stability considerations about all three axes.
Technical Paper

Hypersonic CFD Applications for the National Aero-Space Plane

1989-09-01
892310
The design and analysis of the National Aerospace Plane (NASP) depends heavily on developing critical technology areas through the Technology Maturation Program (TMP). The TMP is being completed almost entirely in government laboratories with technology dissemination to all prime NASP contractors immediately upon completion of any portion of the technology development. These critical technology areas span the entire engineering design of the vehicle; included are structures, materials, propulsion systems, propellants, propulsion/airframe integration, controls, subsystems, and aerodynamics areas. There is currently a heavy dependence on Computational Fluid Dynamics (CFD) for verification of many of the classical engineering tools. Quite often the design of an aircraft uses wind tunnel tests for much of this verification, but for NASP, this task is almost impossible from a practical standpoint.
Technical Paper

Cornering and Wear Characteristics of the Space Shuttle Orbiter Nose-Gear Tire

1989-09-01
892347
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0° to 12°. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0° to 4° under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
Technical Paper

Transition Research in the Mach 3.5 Low-Disturbance Wind Tunnel and Comparisons of Data with Theory

1989-09-01
892379
Supersonic wind tunnels with much lower stream disturbance levels than in conventional tunnels are required to advance transition research. The ultimate objectives of this research are to provide reliable predictions of transition from laminar to turbulent flow on supersonic flight vehicles and to develop techniques for the control and reduction of viscous drag and heat transfer. The experimental and theoretical methods used at NASA Langley to develop a low-disturbance pilot tunnel are described. Typical transition data obtained in this tunnel are compared with flight and previous wind-tunnel data and with predictions from linear stability theory,
Technical Paper

Computational Results for the Effects of External Disturbances on Transition Location on Bodies of Revolution from Subsonic to Supersonic Speeds and Comparisons with Experimental Data

1989-09-01
892381
Computational experiments have been performed for a few configurations in order to investigate the effects of external flow disturbances on the extent of laminar flow and wake drag. Theoretical results have been compared with experimental data for the AEDC cone, for Mach numbers from subsonic to supersonic, and for both free flight and wind tunnel environments. The comparisons have been found to be very satisfactory, thus establishing the utility of the present method for the design and development of “laminar flow” configurations and for the assessment of wind tunnel data. In addition, the present paper presents results of calculations concerning the effects of unit Reynolds numbers on transition. This phenomenon has been observed by a few experimental investigators but has been analyzed in detail for the first time in the present paper with the aid of the theoretical predictions.
Technical Paper

Theoretical Investigation for the Effects of Sweep, Leading-Edge Geometry, and Spanwise Pressure Gradients on Transition and Wave Drag at Transonic, and Supersonic Speed with Experimental Correlations

1988-10-01
881484
The results of a design study of a Hybrid Laminar Flow Control (HLFC) wing at transonic speed and correlative studies for finite, swept supersonic wings are discussed in this paper. Transonic HLFC wing was designed such as to obtain laminar laminar flow on the the wing upper surface for X/C of 0.6 and with suction applied from the leading edge to 60% of the chord and with suction applied from just aft of the leading edge to twenty-five percent of the chord. New theoretical methods have been recently developed for predicting pressure distributions, supersonic wave drag and transition location for finite swept wings at transonic and supersonic Mach number conditions and are illustrative computations are given. Results for laminar and turbulent boundary-layer parameters consisting of the displacement effects and skin friction drag are also presented.
Technical Paper

Wind-Tunnel Investigation of the Forebody Aerodynamics of a Vortex-Lift Fighter Configuration at High Angles of Attack

1988-10-01
881419
Results of a recent low-speed wind-tunnel investigation conducted to define the forebody flow on a 16% scale model of the NASA High Angle-of-Attack Research Vehicle (HARV), an F-18 configuration, are presented with analysis. Measurements include force and moment data, oil-flow visualizations, and surface pressure data taken at angles of attack near and above maximum lift (36° to 52°) at a Reynolds number of one million based on mean aerodynamic chord. The results presented identify the key flow-field features on the forebody including the wing-body strake.
Technical Paper

Low-Speed Vortical Flow over a 5-Degree Cone with Tip Geometry Variations

1988-10-01
881422
An experiment was conducted to measure the surface pressures and sectional side forces on a 5° cone with three nose tips. The nose tips included a sharp, an 8.7% blunt, and a 17.5% blunt nose tip. Rings of pressure orifices were located at 40% and 80% of the model length and the model was rolled from ±180° in 9° increments to determine roll dependence. The sectional side force data for the sharp cone showed a strong dependence on the roll orientation of the model. The blunt nose cone configurations also showed a dependence on roll orientation. The blunt nose configurations were effective in reducing the sectional side force for angles of attack up to 25°. However, at angles of attack greater than 35°, the reduction was no longer significant. Pressure distributions for three angles of attack are presented to highlight details of the flow when: vortex asymmetries are just beginning; the vortices are in a steady asymmetric state; a vortex has shed between the 40% and 80% stations.
Technical Paper

Rapid Adhesive Induction Bonding of Pultruded Aerospace Structures

1988-08-01
881210
Joining advanced composite materials is one of the greatest obstacles to proliferating their use in aerospace structures. Another hindrance is the high cost of manufacturing advanced composite structures using conventional methods. The present trend in both the automotive and aerospace industries is lighter weight, energy efficient structures. In the aerospace community, the use of advanced composite structures has the potential for weight reductions of 35 to 40 percent as compared with the use of conventional aluminum alloys. However, this advantage is offset by the higher cost of manufacturing in using conventional composite technology. This paper identifies pultrusion and induction bonding as potential methods for manufacturing lightweight high-strength advanced composite structures.
Technical Paper

A Summary of Recent Aircraft/Ground Vehicle Friction Measurement Tests

1988-10-01
881403
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Spin-Up Studies of the Space Shuttle Orbiter Main Gear Tire

1988-10-01
881360
One of the factors needed to describe the wear behavior of the Space Shuttle Orbiter main gear tires is their behavior during the spin-up process. An experimental investigation of tire spin-up processes was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF). During the investigation, the influence of various parameters such as forward speed and sink speed on tire spin-up forces were evaluated. A mathematical model was developed to estimate drag forces and spin-up times and is presented. The effect of prerotation was explored and is discussed. Also included is a means of determining the sink speed of the orbiter at touchdown based upon the appearance of the rubber deposits left on the runway during spinup.
X