Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Waste Collector System Technology Comparisons for Constellation Applications

2007-07-09
2007-01-3227
The Waste Collection Systems (WCS) for space vehicles have utilized a variety of hardware for collecting human metabolic wastes. It has typically required multiple missions to resolve crew usability and hardware performance issues that are difficult to duplicate on the ground. New space vehicles should leverage off past WCS systems. Past WCS hardware designs are substantially different and unique for each vehicle. However, each WCS can be analyzed and compared as a subset of ‘technologies’ which encompass fecal collection, urine collection, air systems, and urine pretreatment systems. Technology components from the WCS of various vehicles can then be combined to reduce hardware mass and volume while maximizing use of previous technology and proven human-equipment interfaces. Analysis of past US and Russian WCS are compared and extrapolated to Constellation missions.
Technical Paper

Development of a Rapid Cycling CO2 and H2O Removal Sorbent

2007-07-09
2007-01-3271
The National Aeronautics and Space Administration's (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility for Extravehicular Activity (EVA) duration and objectives. Use of regenerable systems that reduce weight and volume of the space suit life support system is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the EVA with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced.
Technical Paper

The Extended Duration Orbiter Waste Collection System

1990-07-01
901291
A new waste collection system (WCS) is undergoing development for use in the extended duration orbiter (EDO). Requirements for missions up to 18 days and the capability for missions up to 30 days necessitate the development of a new WCS that will have the appropriate capacity. The new system incorporates design features from both Skylab and Space Shuttle Orbiter WCSs. For urine collection, airflow is used to entrain the fluid and transport it to the phase separator where it is separated from the airflow and pumped to the waste water tank. For fecal collection, airflow is used to transport the waste into a collection bag. After use, a plastic lid is installed on the bag, and the bag and contents are compacted. The system for EDO utilizes redundant fans and urine separators. Plans call for the new WCS to be implemented for OV-105 (Endeavor) as well as for EDO. This paper describes the design and development status of the new WCS.
Technical Paper

International Space Station USOS Potable Development Water Dispenser

2008-06-29
2008-01-2010
The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an on-orbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93°C) every thirty minutes.
Technical Paper

Development of Urine Receptacle Assembly for the Crew Exploration Vehicle

2008-06-29
2008-01-2144
The Urine Receptacle Assembly (URA) initially was developed for Apollo as a primary means of urine collection. The aluminum housing with stainless steel honeycomb insert provided all male crewmembers with a non-invasive means of micturating into a urine capturing device and then venting to space. The performance of the URA was a substantial improvement over previous devices but its performance was not well understood. The Crew Exploration Vehicle (CEV) program is exploring the URA as a contingency liquid waste management system for the vehicle. URA improvements are required to meet CEV requirements, including consumables minimization, flow performance, acceptable hygiene standards, crew comfort, and female crewmember capability. This paper presents the results of a historical review of URA performance during the Apollo program, recent URA performance tests on the reduced gravity aircraft under varying flow conditions, and a proposed development plan for the URA to meet CEV needs.
Technical Paper

Pressure Effects on the Self-Extinguishment Limits of Aerospace Materials

2009-07-12
2009-01-2490
The Orion Crew Exploration Vehicle Module (CM) is being designed to operate in an atmosphere of up to 30% oxygen at a pressure of 10.2 psia for lunar missions. Spacecraft materials selection is based on a normal gravity upward flammability test conducted in a closed chamber under the worst expected conditions of pressure and oxygen concentration. Material flammability depends on both oxygen concentration and pressure, but since oxygen concentration is the primary driver, all materials are certified in the 30% oxygen, 10.2 psia environment. Extensive data exist from the Shuttle Program at this condition, which used essentially the same test methodology as the Constellation Program is currently using. Raising the partial pressure of oxygen in the Orion CM immediately before reentry, while maintaining the total cabin pressure at 14.7 psia, has been proposed to maximize the time the crew is able to breathe cabin air after splashdown.
Technical Paper

Rapid Cycling CO2 and H2O Removal System for EMU

2006-07-17
2006-01-2198
Future National Aeronautics and Space Administration (NASA)-planned missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. TDA Research, Inc. (TDA) is developing a high capacity, rapid cycling sorbent to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts.
Technical Paper

Display Comparison for Six-Degree-of-Freedom Force/Torque Control

1985-10-14
851860
A device has been developed (by others) which senses and displays forces and torques generated at the end of a manipulator arm. This device was integrated and evaluated in the one-g version of the Space Transportation System Canadian remote manipulator system arm at the NASA Lyndon B. Johnson Space Center. Evaluations of astronaut performance and preference under varying task conditions and using alternative display formats were performed. Findings indicate that providing visual graphic feedback of force and torque information affects both the time taken to do manipulator tasks and the size of forces generated during these tasks. Also, the format of graphics used affects operator reaction time.
Technical Paper

Conceptual Design of a Piloted Mars Sprint Life Support System

1988-07-01
881059
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse. MANNED MISSIONS TO THE PLANET MARS are included in the present NASA plans for the first decade of the next century [1]*. The first step of human exploration and eventual settlement on Mars will probably be a series of fast missions (“sprints”), with a duration of just over one year, round trip [2].
Technical Paper

Shuttle Waste Management System Design Improvements and Flight Evaluation

1986-07-14
861003
The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.
Journal Article

International Space Station Water System Architecture and Operational Plan

2008-06-29
2008-01-2007
The International Space Station (ISS) is gaining many new capabilities in 2008. The delivery of the United States Operation Segment (USOS) Regenerative Environmental Control and Life Support (ECLS) Systems allow for the ISS crew expansion from 3 to 6 members. The ability to process recovered condensate and produce oxygen from water has been available on the Russian Segment (RS) since the astronauts and cosmonauts have been living on the ISS. The U.S. systems introduce the ability to process urine in addition to condensate greatly reducing the amount of water needed from the ground each year while also reducing the amount of time astronauts need to spend maintaining the systems. However, the interconnectedness of these systems may create operational difficulties and cause the loss of otherwise recoverable water. This paper outlines the current and future USOS and Russian system architectures, system interdependencies and the inter-segment relationships.
Journal Article

International Space Station USOS Crew Quarters Development

2008-06-29
2008-01-2026
The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems.
X