Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition

2007-07-09
2007-01-3143
Shortly after installation of the service and performance heat exchanger (SPCU HX) in 2001, samples collected from the coolant fluid indicated the presence of nickel accompanied by a subsequent decrease in phosphate concentration along with a high microbial load. When the SPCU HX was replaced and evaluated post-flight, it was expected that the heat exchanger would have significant biofilm and corrosion present given the composition of the coolant fluid; however, there was no evidence of either. Early results from two experiments imply that the heat exchanger materials themselves are inhibiting biofilm formation. This paper discusses the results of one set of experiments and puts forward the inhibition of quorum sensing as a possible mechanism for the lack of biofilm formation.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Extravehicular Activity Metabolic Profile Development Based on Apollo, Skylab, and Shuttle Missions

1997-07-01
972502
The importance of being able to determine the usage rate of life support subsystem consumables was recognized well before the first Apollo Extravehicular Activity (EVA). Since that time, metabolic activity levels have been evaluated and recorded for each EVA crew member. Throughout the history of the United States space program, EVA metabolic rates have been shown to be variable depending upon the mission scenario and the equipment used. Knowing this historic information is invaluable for current EVA planning activities, as well as for the design of future Extravehicular Mobility Unit (EMU) systems. This paper presents an overview of historic metabolic expenditures for Apollo, Skylab, and Shuttle missions, along with a discussion of the types of EVA crew member activities which lead to various metabolic rate levels, and a discussion on how this data is being used to develop advanced EMU systems.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Proof of Concept High Lift Heat Pump for a Lunar Base

1998-07-13
981683
When a permanent human outpost is established on the Moon, various methods may be used to reject the heat generated by the base. One proposed concept is the use of a heat pump operating with a vertical, flow-through thermal radiator mounted on a Space Station type habitation module [1]. Since the temperature of the lunar surface varies over the day, the vertical radiator sink temperatures can reach much higher levels than the comfort and even survivability requirements of a habitation module. A high temperature lift heat pump will not only maintain a comfortable habitation module temperature, but will also decrease the size of the radiators needed to reject the waste heat. Thus, the heat pump will also decrease the mass of the entire thermal system. Engineers at the Johnson Space Center (JSC) have tested a High Lift Heat Pump design and are developing the next generation heat pump based on information and experience gained from this testing.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Enhanced Performance Evaporative Heat Sinks for Space Applications

1998-07-13
981779
An evaporative heat sink has been designed and built by AlliedSignal for NASA's Johnson Space Center. The unit is a demonstrator of a primary heat exchanger for NASA's prototype Crew Return Vehicle (CRV), designated the X-38. The primary heat exchanger is responsible for rejecting the heat produced by both the flight crew and the avionics. Spacecraft evaporative heat sinks utilize space vacuum as a resource to control the vapor pressure of a liquid. For the X-38, water has been chosen as the heat transport fluid. A portion of this coolant flow is bled off for use as the evaporant. At sufficiently low pressures, the water can be made to boil at temperatures approaching its freezing point. Heat transferred to liquid water in this state will cause the liquid to evaporate, thus creating a heat sink for the spacecraft's coolant loop. The CRV mission requires the heat exchanger to be compact and low in mass.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

2008-06-29
2008-01-2115
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Lightweight, Flexible, and Freezable Heat Pump/Radiator for EVA Suits

2008-06-29
2008-01-2112
We have completed preliminary tests that show the feasibility of an innovative concept for a spacesuit thermal control system using a lightweight, flexible heat pump/radiator. The heat pump/radiator is part of a regenerable LiCI/water absorption cooling device that absorbs an astronaut's metabolic heat and rejects it to the environment via thermal radiation at a relatively high temperature. We identified key design specifications for the system, demonstrated that it is feasible to fabricate the flexible radiator, measured the heat rejection capability of the radiator, and assessed the effects on overall mass of the PLSS. We specified system design features that will enable the flexible absorber/radiator to operate in a wide range of space exploration environments. The materials used to fabricate the flexible absorber/radiator samples were all found to be low off-gassing and many have already been qualified for use in space.
X