Refine Your Search



Search Results


New Particulate Matter Sensor for On Board Diagnosis

The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

Alternative Particle Number Filtration Performance Test Method

Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
Technical Paper

Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions

In order to meet the challenging CO2 targets beyond 2020 without sacrificing performance, Gasoline Direct Injection (GDI) technology, in combination with turbo charging technology, is expanding in the automotive industry. However, while this technology does provide a significant CO2 reduction, one side effect is increased Particle Number (PN) emission. As a result, from September 2017, GDI vehicles in Europe are required to meet the stringent PN emission limits of 6x1011 #/km under the Worldwide harmonized Light vehicles Test Procedure (WLTP). In addition, it is required to meet PN emission of 9x1011 #/km under Real Driving Emission (RDE) testing, which includes a Conformity Factor (CF) of 1.5 to account for current measurement inaccuracies on the road. This introduction of RDE testing in Europe and China will especially provide a unique challenge for the design of exhaust after-treatment systems due to its wide boundary conditions.
Technical Paper

Durability Study on Si-SiC Material for DPF(2)

Among the durability items of the DPF (Diesel Particulate Filter), high accumulated soot mass limit is important for the low fuel consumption and also for the robustness. In case of catalyzed DPF, it depends on the following two properties during soot regeneration. One is the lower maximum-temperature inside of the DPF during usual regeneration in order to preserve the catalyst performance. The other is the higher thermal resistance against the unusual regeneration of excess amount of soot. This paper presents the improvement in the soot mass limit of Si bonded SiC DPF. Maximum-temperature inside of the DPF was lowered by the improvement of thermal conductivity of the material, resulted from the controlling of the microstructure. Additionally the thermal resistance was improved by the surface treatment of the Si and SiC.
Technical Paper

Engine Bench and Vehicle Durability Tests of Si bonded SiC Particulate Filters

Modern filter systems allow a significant reduction of diesel particulate emissions. The new silicon bonded silicon carbide particulate filters (Si-SiC filters) play an important role in this application, because they provide flexibility in terms of mean pore size and porosity and also have a high thermal shock capability to meet both engineering targets and emission limits for 2005 and beyond. Particulate filters are exposed to high temperatures and a harsh chemical environment in the exhaust gas of diesel vehicles. This paper will present further durability evaluation results of the new Si bonded SiC particulate filters which have been collected in engine bench tests and vehicle durability runs. The Si-SiC filters passed both 100 and 200 regeneration cycles under severe ageing conditions and without any problems. The used filters were subjected to a variety of analytical tests. The back pressure and ash distribution were determined. The filter material was also analysed.
Technical Paper

Soot Regeneration Model for SiC-DPF System Design

The Diesel Particulate Filter (DPF) system has been developed as one of key technologies to comply with tight diesel PM emission regulations. For the DPF control system, it is necessary to maintain temperature inside the DPF below the allowable service temperature, especially during soot regeneration to prevent catalyst deterioration and cracks. Therefore, the evaluation of soot regeneration is one of the key development items for the DPF system. On the other hand, regeneration evaluation requires a lot of time and cost since many different regeneration conditions should be investigated in order to simulate actual driving. The simulation tool to predict soot regeneration behavior is a powerful tool to accelerate the development of DPF design and safe regeneration control strategies. This paper describes the soot regeneration model applied to fuel additive and catalyzed types, and shows good correlation with measured data.
Technical Paper

Electric Heating Regeneration of Large Wall-Flow Type DPF

Ceramic wall-flow type diesel particulate filters (DPF) are being investigated for the aftertreatment systems of heavy duty engines. To use ceramic DPF more reliably and easily, electric heating regenerations are studied varying combustion air flow rates and amounts of accumulated soot. Despite electric heater capacity limitations, it is possible to regenerate DPF at a certain combustion air flow rate without thermal shock failure. The maximum withstood temperature against thermal shock failure of electric heating regeneration is similar to that of diesel burner regeneration on DPF with a nine inch diameter and a twelve inch length.
Technical Paper

Improvement of Pore Size Distribution of Wall Flow Type Diesel Particulate Filter

To reduce flow restriction of the wall flow type diesel particulate filters, the pore size distribution of DPF material was improved. Large pore material is preferred to reduce the flow restriction of the DPF. However pore diameter should be controlled within a certain limit to maintain high trapping efficiency against diesel particulates. In order to solve these conflicting matters, the mean pore diameter was enlarged from 13μm of the current material to 20 μm or more, while maintaining the cumulative volume of pores above 100μm within 8% of the total pore volume. The safe limit against thermal shock failure of the improved DPF material having 9″D x 12″/, 12.5/ volume was also determined using diesel burner regeneration system.
Technical Paper

Flat Quartz Angular Rate Sensor for Automotive Applications

A newly designed, flat, angular-rate sensor consisting of T-shaped vibrating resonators using a single quartz crystal has been developed for automotive, chassis-control systems and vehicle navigation systems. For these systems, the sensor is required to be highly stable under operating conditions. Our newly developed sensor's performance is highly reliable because the resonator is made of quartz that is highly stable under operating conditions, especially temperature changes. The newly developed quartz angular sensor is easy to fabricate because it has a 2-dimensional structure. This structure facilitates the mass production of the sensor at low cost; a requirement for automotive industry use. The flat sensor (0.3mm thick) is fabricated from z-cut quartz and shows promising performance for automotive applications. The flat structure also has the advantage of being easily mounted in flat, narrow spaces.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

Design Optimization of Wall Flow Type Catalyzed Cordierite Particulate Filter for Heavy Duty Diesel

This paper reports on the desired performances for Catalyzed Soot Filters (Hereinafter referred as “CSF”), which is composed of a Diesel Particulate Filter (DPF) coated with an Oxidation Catalyst, its design factors and their influence on DPF performance, and on the lifetime prediction method to effectively design a DPF for durability. Performance means pressure drop, Particulate Matter (PM) regeneration limit, time for light-off, and canning strength. Design factors include cell structure, overall DPF size and material porosity. Knowing the relationships between performance and design factors assist the engineer in optimizing the selection of material, cell structure and size of the DPF.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

The Effect of SiC Properties on the Performance of Catalyzed Diesel Particulate Filter(DPF)

The DPF(Diesel Particulate Filter) has been established as a key technology in reducing diesel PM emission. Also Catalyzed-DPF Systems are viewed as the next generation DPF System in the automotive sector, replacing the current Fuel Additive System. The performance requirements of the DPF-equipped vehicle are good fuel economy, good driving performance, high PM regeneration performance of accumulated soot and high durability. In this paper the effect of Catalyzed-DPF characteristics, such as porosity, pore size, cell structure and catalyst loading have been defined on pressure drop, filtration efficiency, regeneration efficiency and regeneration behavior.
Technical Paper

Prediction of Catalytic Performance for Ultra Thin Wall and High Cell Density Substrates

New ultra-low vehicle emission legislation requires advanced catalyst systems to achieve high conversion requirements. Manufacturers have to improve both the washcoat formulations and the catalyst substrate technology to meet these new regulations. This paper will present the results of a computer modeling study on the effects of ultra-thinwall catalysts on hydrocarbon and carbon monoxide light-off performance improvement. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of advanced substrate modeling for ultra-thin wall ceramic substrates. Results show that thermal mass has the greatest effect on light-off performance. Decreases in wall thickness offer the greatest benefit to light-off performance by lowering the thermal mass of the substrate, thus allowing it to reach light-off temperature faster.
Technical Paper

Real-Time On-Board Measurement of Mass Emission of NOx, Fuel Consumption, Road Load, and Engine Output for Diesel Vehicles

Regulatory compliance measurements for vehicle emissions are generally performed in well equipped test facilities using chassis dynamometers that simulate on-road conditions. There is also a requirement for obtaining accurate information from vehicles as they operate on the road. An on-board system has been developed to measure real-time mass emission of NOx, fuel consumption, road load, and engine output. The system consists of a dedicated data recorder and a variety of sensors that measure air-to-fuel ratios, NOx concentrations, intake air flow rates, and ambient temperature, pressure and humidity. The system can be placed on the passenger seat and operate without external power. This paper describes in detail the configuration and signal processing techniques used by the on-board measurement system. The authors explain the methods and algorithms used to obtain (1) real-time mass emission of NOx, (2) real-time fuel consumption, (3) road load, and (4) engine output.
Technical Paper

High Cell Density and Thin Wall Substrate for Higher Conversion Ratio Catalyst

Although air pollution has mitigated since the introduction of exhaust emission regulations, further reduction of it especially in the metropolitan areas is anticipated. An effective way to resolve this issue is to improve the catalyst performance. Of many approaches, improving substrate is one promising way to achieve this goal. Results of applying high cell density and light- weight substrates, coupled with high precious metal content, are discussed theoretically and verified experimentally here. The significant improvements made in the low temperature activity and warmed-up conversions by increasing geometrical surface areas and lowering thermal mass of high cell density substrates are described.
Technical Paper

Study of Ceramic Catalyst Optimization for Emission Purification Efficiency

In this study, to satisfy increasingly strict emission regulations, the conversion efficiency of a 0.11 mm (4 mil) thin-wall catalyst is discussed. The effects of catalyst bulk density on reducing heat mass to improve catalyst emission conversion in the early cold transient mode (Bag 1 in the FTP-75 mode) is quantitatively discussed. To analyze the effects of low heat mass, catalyst's bed temperatures were measured. Effects of the geometric surface area (GSA) and volume of the catalyst were also analyzed. An early feedback control system with an HEGO oxygen sensor and a secondary air injection control system with an original oxygen sensor were compared with an original control system on THC, CO, and NOx emission amounts.
Technical Paper

Filtration Behavior of Diesel Particulate Filters (1)

This paper is Part-1 of two papers discussing the filtration behavior of diesel particulate filters. Results of the fundamental study are presented in Part-1, and test results for real size DPFs are reported in the supplement, Part-2. In this paper, a fundamental experimental study was performed on the effect of pore size and pore size distribution on the PM filtration efficiency of the ceramic, wall-flow Diesel Particulate Filter (DPF). Small round plates of various average mean pore sizes (4.6, 9.4, 11.7, 17.7 micro-meters) with a narrow pore size distribution were manufactured for the tests. During the DPF filtration efficiency tests, ZnCl2 particles in the range of 10 nm to 500 nm were used instead of PM from actual diesel engine exhaust. ZnCl2 particles were made using an infrared furnace and separated into monodisperse particles by DMA (Differential Mobility Analyzer).
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.