Refine Your Search

Search Results

Viewing 1 to 9 of 9
Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Technical Paper

Study of Ceramic Catalyst Optimization for Emission Purification Efficiency

1994-03-01
940784
In this study, to satisfy increasingly strict emission regulations, the conversion efficiency of a 0.11 mm (4 mil) thin-wall catalyst is discussed. The effects of catalyst bulk density on reducing heat mass to improve catalyst emission conversion in the early cold transient mode (Bag 1 in the FTP-75 mode) is quantitatively discussed. To analyze the effects of low heat mass, catalyst's bed temperatures were measured. Effects of the geometric surface area (GSA) and volume of the catalyst were also analyzed. An early feedback control system with an HEGO oxygen sensor and a secondary air injection control system with an original oxygen sensor were compared with an original control system on THC, CO, and NOx emission amounts.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Thick Film ZrO2 NOx Sensor

1996-02-01
960334
This paper describes the design concept and evaluation test results of a multi-layered, thick film zirconia NOx sensor which can be used for lean-burn engine management. The oxygen concentration in the measuring gas is lowered to a predetermined level with an oxygen pumping cell, in the first stage. In the second stage, another pumping cell further lowers the oxygen concentration which results in simultaneous NOx decomposition. The second stage pumping current is proportional to the NOx concentration in the measuring gas.
Technical Paper

Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines

1997-02-24
970858
This paper describes a thick film ZrO2 NOx sensor feasible for diesel and gasoline engine applications, and introduces modification items from the previous concept design.(1) The modification items comprise simplifying the sensing element design to reduce output terminals for package design and applying temperature control to the sensing element in order to minimize sensor performance dependency on gas temperature. The NOx sensor indicates a stable linear signal in proportion to NOx concentration in a wide range of temperature, A/F and NOx concentration as a practical condition on both gasoline and diesel engines. The NOx sensor shows a good response in hundred msec. and a sharp signal following NOx generation in a transient state as well. Besides, another type of a NOx sensor is proposed for low NOx measurement in a practical use, by an electromotive force(EMF) voltage instead of a pumping current.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Cold Start Emissions

1997-02-24
970266
In order to meet the strict automobile emission regulations in the U.S.A. and Europe, new aftertreatment technologies such as the EHC and HC Adsorber have been developed to reduce the cold start emissions. The EHC is obviously effective in reducing emissions, but has the demerits of a large electric power demand and a complicated power control system to support it (13). A by-pass type HC adsorber system has the concerns of unreliable by-pass valves and complicated plumbing (10). A major technical challenge of the in-line type HC adsorber was the difference between the HC desorption temperature and the light-off temperature of the burn-off catalyst. This paper describes the evaluation results of a completely passive “In-line HC Adsorber System” which can reduce the cold start emissions without the application of any type of mechanical or pneumatic control valve in the exhaust system.
Technical Paper

Heated Zirconia Exhaust Gas Oxygen Sensor Having a Sheet-Shaped Sensing Element

1985-02-01
850382
This paper describes the design and property of an electrically heated zirconia exhaust gas oxygen sensor having small-sized and sheet-shaped sensing element. Sensing element and sensor have been miniaturized by monolithic formation of sensing element and heater by means of thick-film techniques. The difference in response property according to the angle of the electrode to exhaust gas flow because of the sheet-shaped configuration of sensing element was minimized by proper design of protective cover. Similarity in λ control property and limit cycle frequency was demonstrated with heated zirconia oxygen sensor having test tube-shaped sensing element by engine dynamometer durability test over 120,000 equivalent miles.
Technical Paper

Flat Quartz Angular Rate Sensor for Automotive Applications

2000-03-06
2000-01-0089
A newly designed, flat, angular-rate sensor consisting of T-shaped vibrating resonators using a single quartz crystal has been developed for automotive, chassis-control systems and vehicle navigation systems. For these systems, the sensor is required to be highly stable under operating conditions. Our newly developed sensor's performance is highly reliable because the resonator is made of quartz that is highly stable under operating conditions, especially temperature changes. The newly developed quartz angular sensor is easy to fabricate because it has a 2-dimensional structure. This structure facilitates the mass production of the sensor at low cost; a requirement for automotive industry use. The flat sensor (0.3mm thick) is fabricated from z-cut quartz and shows promising performance for automotive applications. The flat structure also has the advantage of being easily mounted in flat, narrow spaces.
Technical Paper

Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics

1999-03-01
1999-01-0202
This paper describes improvements achieved with regard to the long term stability and the system integrability of a previously described thick film NOx sensor for gasoline lean burn and diesel applications. (1, 2, 3) Durability test up to 1000 hours consisting of a temperature cycle have been carried out by a stoichiometric operating gasoline engine test bench. The NOx sensor demonstrates the NOx output shift in terms of the NOx sensitivity less than 5 % on a model gas apparatus and ± 7 % measuring accuracy in practical operating condition on a diesel engine after 1000 hours that is equivalent to approximately 60K miles driving. The integration of the control electronics for the sensor in its connector is achieved for the sensitive measuring current in the μA-range or less on vehicle applications. The developed electronics functions closed-loop controls for a tip temperature and oxygen pumps as well as a diagnosis of sensor malfunctions.
X