Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements

2019-04-02
2019-01-0644
A multi-year, multi-vehicle study was conducted to quantify the aerodynamic drag changes associated with drag reduction technologies for light-duty vehicles. Various technologies were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent winds. The technologies investigated include active grille shutters, production and custom underbody treatments, air dams, wheel curtains, ride height control, side mirror removal and combinations of these. This paper focuses on mean surface-, wake-, and underbody-pressure measurements and their relation to aerodynamic drag. Surface pressures were measured at strategic locations on four sedans and two crossover SUVs.
Journal Article

Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles: a Comprehensive Wind Tunnel Study

2016-04-05
2016-01-1613
In a campaign to quantify the aerodynamic drag changes associated with drag reduction technologies recently introduced for light-duty vehicles, a 3-year, 24-vehicle study was commissioned by Transport Canada. The intent was to evaluate the level of drag reduction associated with each technology as a function of vehicle size class. Drag reduction technologies were evaluated through direct measurements of their aerodynamic performance on full-scale vehicles in the National Research Council Canada (NRC) 9 m Wind Tunnel, which is equipped with a the Ground Effect Simulation System (GESS) composed of a moving belt, wheel rollers and a boundary layer suction system. A total of 24 vehicles equipped with drag reduction technologies were evaluated over three wind tunnel entries, beginning in early 2014 to summer 2015. Testing included 12 sedans, 8 sport utility vehicles, 2 minivans and 2 pick-up trucks.
Journal Article

Measurement of the On-Road Turbulence Environment Experienced by Heavy Duty Vehicles

2014-09-30
2014-01-2451
Terrestrial winds play an important role in affecting the aerodynamics of road vehicles. Of increasing importance is the effect of the unsteady turbulence structure of these winds and their influence on the process of optimizing aerodynamic performance to reduce fuel consumption. In an effort to predict better the aerodynamic performance of heavy-duty vehicles and various drag reduction technologies, a study was undertaken to measure the turbulent wind characteristics experienced by heavy-duty vehicles on the road. To measure the winds experienced on the road, a sport utility vehicle (SUV) was outfitted with an array of four fast-response pressure probes that could be arranged in vertical or horizontal rake configurations that provided measurements up to 4.0 m from the ground and spanning a width of 2.4 m. To characterize the influence of the proximity of the vehicle on the pressure signals of the probes, the SUV and its measurements system was calibrated in a large wind tunnel.
X