Refine Your Search

Topic

Author

Search Results

Journal Article

Heavy-Duty Vehicle Rear-View Camera Systems

2014-09-30
2014-01-2381
Transport Canada, through its ecoTECHNOLOGY for Vehicles program, retained the services of the National Research Council Canada to undertake a test program to examine the operational and human factors considerations concerning the removal of the side mirrors on a Class 8 tractor equipped with a 53 foot dry van semi-trailer. Full scale aerodynamic testing was performed in a 2 m by 3 m wind tunnel on a system component basis to quantify the possible fuel savings associated with the removal of the side mirrors. The mirrors on a Volvo VN780 tractor were removed and replaced with a prototype camera-based indirect vision system consisting of four cameras mounted in the front fender location; two cameras on either side of the vehicle. Four monitors mounted in the vehicle - two mounted on the right A-pillar and two mounted on the left A-pillar - provided indirect vision information to the vehicle operator.
Journal Article

Review of Canadian Flight Deck and Cabin Smoke and Fire Incidents: 2001-2010

2013-09-17
2013-01-2307
This paper presents a review of the flight deck and cabin fire and smoke incidents reported to the Canadian airworthiness authorities over a ten year span. The fire and smoke related diversions are categorized to identify areas where efforts could be increased to improve safety. The costs of diversions are estimated to identify areas where operators could reduce costs by seeking technologies to reduce the number of diversions without any impact on safety. Only twenty-eight investigation reports into fire and smoke incidents onboard aircraft have been published over the past three decades. These reports are not sufficient to identify areas where operators can reduce their operating costs. The Canadian airworthiness authorities received over 1,000 smoke and fire incidents from the years 2001 to 2010, of which, over 680 reported fire and smoke in the flight deck and cabin compartments for various makes and models of aircraft.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Technical Paper

An Experimental Study on the Effect of Exhaust Gas Recirculation on a Natural Gas-Diesel Dual-Fuel Engine

2020-04-14
2020-01-0310
Natural gas (NG)-diesel dual-fuel combustion can be a suitable solution to reduce the overall CO2 emissions of heavy-duty vehicles using diesel engines. One configuration of such a dual-fuel engine can be port injection of NG to form a combustible air-NG mixture in the cylinder. This mixture is then ignited by a direct injection of diesel. Other potential advantages of such an engine include the flexibility of switching back to diesel-only mode, reduced hardware development costs and lower soot emissions. However, the trade-off is lower brake thermal efficiency (BTE) and higher hydrocarbon emissions, especially methane, at low load and/or high engine speed conditions. Advancing the diesel injection timing tends to improve the BTE but may cause the NOx emissions to increase.
Technical Paper

LiDAR Based Classification Optimization of Localization Policies of Autonomous Vehicles

2020-04-14
2020-01-1028
People through many years of experience, have developed a great intuitive sense for navigation and spatial awareness. With this intuition people are able to apply a near rules based approach to their driving. With a transition to autonomous driving, these intuitive skills need to be taught to the system which makes perception is the most fundamental and critical task. One of the major challenges for autonomous vehicles is accurately knowing the position of the vehicle relative to the world frame. Currently, this is achieved by utilizing expensive sensors such as a differential GPS which provides centimeter accuracy, or by using computationally taxing algorithms to attempt to match live input data from LiDARs or cameras to previously recorded data or maps. Within this paper an algorithm and accompanying hardware stack is proposed to reduce the computational load on the localization of the robot relative to a prior map.
Journal Article

Considerations for the Wind Tunnel Simulation of Tractor-Trailer Combinations: Correlation of Full- and Half-Scale Measurements

2013-09-24
2013-01-2456
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is commonly employed in testing of class 8 tractors at full- and model-scales. In support of this work a series of tests of an identical model at full- and half-scale were performed to investigate some of the effects resulting from simulation compromises. Minimum Reynolds Number considerations drive the crucial decisions of what scale and speed to employ for testing. The full- and half-scale campaigns included Reynolds Number sweeps allowing conclusions to be reached on the minimum Reynolds number required for testing of fully-detailed commercial truck models. Furthermore the Reynolds sweeps were repeated at a variety of yaw angles to examine whether the minimum Reynolds Number was a function of yaw angle and the resulting flow regime changes. The test section of the NRC 9-meter wind tunnel is not sufficiently long to accommodate a full-scale tractor and a typical trailer length of 48′ or more.
Journal Article

Characterization of the Ultrafine and Black Carbon Emissions from Different Aviation Alternative Fuels

2015-09-15
2015-01-2562
This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
Technical Paper

Effects of Cetane Enhancing Additives and Ignition Quality on Diesel Engine Emissions

1997-10-01
972968
The effects of cetane number and the cetane enhancing additives on diesel exhaust emissions were investigated on a single cylinder DI research engine. The engine used in this study incorporates the features of contemporary medium-to-heavy duty diesel engines and is tuned to US EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included diesel fuels obtained from different sources with various natural cetane ratings as well as a number of fuels blended by adding two cetane improvers into three base fuels. The two cetane improvers we used were a nitrate-type additive and a peroxide-type additive. Increasing the cetane number resulted in a general decrease in NOx emissions. Similar reductions in NOx emissions were observed with increasing cetane number for all the base fuels irrespective of the cetane improver used in the fuel.
Technical Paper

An Experimental Investigation on the Emission Characteristics of HCCI Engine Operation Using N-Heptane

2007-07-23
2007-01-1854
This paper presents the emission characteristics of a HCCI engine operation using n-heptane. The experiments were conducted in a single cylinder Co-operative Fuel Research (CFR) engine equipped with an air-assist port fuel injector. The effects of intake temperature, air/fuel ratio, compression ratio, turbo-charging, and EGR rate on exhaust emissions were explored. The analysis of the exhaust gases included oxides of nitrogen (NOx), nitrous oxide (N2O), carbon monoxide (CO), total hydrocarbon (THC), and soot. The hydrocarbon species present in exhaust gases and their concentrations at several operating conditions were also characterized. The strategies to obtain low HC, CO and NOx emissions are presented and discussed. The approaches to effectively retard HCCI combustion phase without deteriorating combustion efficiency are examined. It was found that HCCI combustion produces extremely low soot and NOx emissions.
Technical Paper

Comparison of the Exhaust Emissions of Diesel Fuels Derived from Oil Sands and Conventional Crude Oil

1998-10-19
982487
The effects of fuel properties of both oil-sands-derived and conventional-crude-oil-derived diesel fuels were investigated on a single-cylinder DI research engine. The engine used in this study incorporated features of contemporary medium- to heavy-duty diesel engines and was tuned to the U.S. EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included 12 fuels blended using refinery streams to have controlled total aromatic levels and 7 other diesel fuels obtained from different sources. The results showed that at a constant cetane number (44) and sulfur content (150 ppm), oil-sands-derived fuels produced similar NOx emissions as their conventional-crude-oil-derived counterparts and total aromatic content and fuel density could be used in a regression model to predict NOx emissions.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

Evaluation of Kinetics Process in CFD Model and Its Application in Ignition Process Analysis of a Natural Gas-Diesel Dual Fuel Engine

2017-03-28
2017-01-0554
Computational fluid dynamics (CFD) model has been widely applied in internal combustion (IC) engine research. The integration of chemical kinetic model with CFD provides an opportunity for researchers to investigate the detailed chemical reactions for better understanding the combustion process of IC engines. However, the simulation using CFD has generally focused on the examination of primary parameters, such as temperature and species distributions. The detailed investigation on chemical reactions is limited. This paper presents the development of a post-processing tool capable of calculating the rate of production (ROP) of interested species with the known temperature, pressure, and concentration of each species in each cell simulated using CONVERGE-SAGE CFD model.
Technical Paper

Potential for the Accumulation of Ice and Snow for a Boat-Tail Equipped Heavy-Duty Vehicle

2016-09-27
2016-01-8141
With increasing use of boat-tails on Canadian roads, a concern had been raised regarding the possibility for ice and snow to accumulate and shed from the cavity of a boat-tail affixed to a dry-van trailer, posing a hazard for other road users. This paper describes a preliminary evaluation of the potential for ice and snow accumulation in the cavity of a boat-tail-equipped heavy-duty vehicle. A transient CFD approach was used and combined with a quasi-static particle-tracking simulation to evaluate, firstly, the tendency of various representative ice or snow particles to be entrained in the vehicle wake, and secondly, the potential of such particles to accumulate on the aft end of a dry-van trailer with and without various boat-tail configurations. Results of the particle tracking analyses showed that the greatest numbers of particles impinge on the base of the trailer for the no-boat-tail case, concentrated on the upper surface of the back face of the trailer.
Technical Paper

In-Cabin Aeroacoustics of a Full-Scale Transport Truck

2016-09-27
2016-01-8143
The noise generated by the flow of air past a transport truck is a key design factor for the manufacturers of these vehicles as the sound levels in the cabin are a significant component of driver comfort. This paper describes a collaboration between Volvo GTT and the National Research Council Canada to measure the in-cabin aeroacoustics of a full-scale cab-over tractor in the NRC 9 m Wind Tunnel. Acoustic instrumentation was installed inside the tractor to record cabin noise levels and externally to acquire tunnel background noise data. Using a microphone mounted on the driver’s-side tunnel wall as a reference to remove variations in background noise levels between data points, differences in cabin noise levels were able to be detected when comparing the tractor with different configurations. The good repeatability of the data allowed for differences of as little as 0.5 dB to be measured.
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
X