Refine Your Search

Topic

Search Results

Technical Paper

An Experimental Investigation on the Emission Characteristics of HCCI Engine Operation Using N-Heptane

2007-07-23
2007-01-1854
This paper presents the emission characteristics of a HCCI engine operation using n-heptane. The experiments were conducted in a single cylinder Co-operative Fuel Research (CFR) engine equipped with an air-assist port fuel injector. The effects of intake temperature, air/fuel ratio, compression ratio, turbo-charging, and EGR rate on exhaust emissions were explored. The analysis of the exhaust gases included oxides of nitrogen (NOx), nitrous oxide (N2O), carbon monoxide (CO), total hydrocarbon (THC), and soot. The hydrocarbon species present in exhaust gases and their concentrations at several operating conditions were also characterized. The strategies to obtain low HC, CO and NOx emissions are presented and discussed. The approaches to effectively retard HCCI combustion phase without deteriorating combustion efficiency are examined. It was found that HCCI combustion produces extremely low soot and NOx emissions.
Technical Paper

Development of a Unique Icing Spray System for a New Facility for Certification of Large Turbofan Engines

2011-06-13
2011-38-0099
The Global Aerospace Centre for Icing and Environmental Research (GLACIER) facility has been constructed in Thompson, Manitoba, Canada. This project involves the construction and operation of a facility which will provide icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. MDS Aero Support, in partnership with the National Research Council of Canada (NRC), Pratt and Whitney Canada, and Rolls Royce Canada, has developed a globally unique outdoor engine test and certification facility. The prime purpose of this facility is for icing certification of aviation gas turbine engines, initially for Rolls-Royce and Pratt & Whitney, two of the three largest gas turbine manufacturers in the world.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Aluminum Extrusions for Automotive Crash Applications

2017-03-28
2017-01-1272
One of the main applications for aluminum extrusions in the automotive sector is crash structures including crash rails, crash cans, bumpers and structural body components. The objective is usually to optimize the energy absorption capability for a given structure weight. The ability to extrude thin wall multi-void extrusions contributes to this goal. However, the alloy used also plays a significant role in terms of the ability to produce the required geometry, strength - which to a large extent controls the energy absorption capability and the “ductility” or fracture behavior which controls the strain that can be applied locally during crush deformation before cracking. This paper describes results of a test program to examine the crush behavior of a range of alloys typically supplied for automotive applications as a function of processing parameters including artificial ageing and quench rate.
Technical Paper

The Fate of Chlorine and Heavy Metals During Pyrolysis of Automobile Shredder Residue*

1999-03-01
1999-01-0671
One of the major sources of chlorine in automobiles is polyvinyl chloride (PVC). When old discarded automobiles enter the recycling loop by far the largest percent of this material finds its way into the solid waste fraction known as automobile shredder residue (ASR). While the majority of this waste is currently disposed of in landfills new processes are currently being evaluated to recycle and recover the valuable resources contained in this solid waste. Pyrolysis, the thermal cracking of the polymeric materials present in ASR, to recover the petrochemical hydrocarbons is one such technology which is receiving attention. However, like combustion with energy recovery, the pyrolysis process is receiving close scrutiny in terms of its environmental impact. These concerns have centered around the fate of the chlorine and the heavy metals present in the ASR.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

A Phenomenological Model for Soot Formation and Oxidation in Direct-Injection Diesel Engines

1995-10-01
952428
The concentration of carbonaceous particulate matter in the exhaust of diesel engines depends on the rates of formation and oxidation of soot in the combustion chamber. Soot forms early in the combustion process when local fuel-rich areas exist, whereas soot oxidation occurs later when more air is entrained into the fuel spray. Based on this understanding, a phenomenological combustion model is established. In the model, the cylinder volume is divided into four zones: a rich fuel spray core, a premixed-burning/burned gas zone, a mixing controlled burning zone and a lean air zone. Soot formation takes place in the mixing controlled burning zone where the local C/O ratio is above the critical value. Soot oxidation occurs in the premixed-burning/burned gas zone as air is entrained. By using a quasi-global chemical reaction scheme, the oxidation of soot particles by different species can be investigated.
Technical Paper

Potential for the Accumulation of Ice and Snow for a Boat-Tail Equipped Heavy-Duty Vehicle

2016-09-27
2016-01-8141
With increasing use of boat-tails on Canadian roads, a concern had been raised regarding the possibility for ice and snow to accumulate and shed from the cavity of a boat-tail affixed to a dry-van trailer, posing a hazard for other road users. This paper describes a preliminary evaluation of the potential for ice and snow accumulation in the cavity of a boat-tail-equipped heavy-duty vehicle. A transient CFD approach was used and combined with a quasi-static particle-tracking simulation to evaluate, firstly, the tendency of various representative ice or snow particles to be entrained in the vehicle wake, and secondly, the potential of such particles to accumulate on the aft end of a dry-van trailer with and without various boat-tail configurations. Results of the particle tracking analyses showed that the greatest numbers of particles impinge on the base of the trailer for the no-boat-tail case, concentrated on the upper surface of the back face of the trailer.
Technical Paper

Effects of Cetane Enhancing Additives and Ignition Quality on Diesel Engine Emissions

1997-10-01
972968
The effects of cetane number and the cetane enhancing additives on diesel exhaust emissions were investigated on a single cylinder DI research engine. The engine used in this study incorporates the features of contemporary medium-to-heavy duty diesel engines and is tuned to US EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included diesel fuels obtained from different sources with various natural cetane ratings as well as a number of fuels blended by adding two cetane improvers into three base fuels. The two cetane improvers we used were a nitrate-type additive and a peroxide-type additive. Increasing the cetane number resulted in a general decrease in NOx emissions. Similar reductions in NOx emissions were observed with increasing cetane number for all the base fuels irrespective of the cetane improver used in the fuel.
Technical Paper

Effects of Fuel Properties on Exhaust Emissions of a Single Cylinder DI Diesel Engine

1996-10-01
962116
In this study, the AVL 8-mode steady-state simulations of the EPA transient test were conducted on a two litre single cylinder Ricardo Proteus research engine using two fuel matrices, one consisting fuels having different cetane numbers and the other consisting fuels of different aromatic contents. Engine exhaust emissions of NOx, HC, CO, CO2 and particulates were measured at two different injection timings. The results show that the single cylinder engine behaves similarly as a number of multi-cylinder production engines. The 8-mode simulation was also shown to produce exhaust emissions close to those obtained from the EPA transient test procedure. The cetane number response of the research engine indicates that an increase in cetane number of the fuel with cetane improvers reduced NOx emissions but increased particulate emissions.
Technical Paper

An Experimental Investigation of S.I. Engine Operation on Gaseous Fuels Lean Mixtures

2005-10-24
2005-01-3765
The operation of S.I. engines on lean or diluents containing gaseous fuel-air mixtures is attractive in principle since it can provide improved fuel economy, reduced tendency to knock and low NOx emissions combined with a possible improvement to the operational life of the engine. However, the overall flame propagation rates then tend to drop sharply as the operational mixture is excessively leaned or diluted with CO2 or N2. The paper presents experimental data obtained in a single cylinder, variable compression ratio, S.I., CFR engine when operated on a number of gaseous fuels and some of their mixtures. A gradual leaning of the operating mixture can affect adversely in turn, emissions of CO and unburned fuel and cyclic variation. The extent of deterioration in these operating parameters is shown to correlate well with the corresponding values of the combustion period, a key combustion indicator. Similar effects were observed when adding diluents to stoichiometric CH4-air mixtures.
Journal Article

Characterization of the Ultrafine and Black Carbon Emissions from Different Aviation Alternative Fuels

2015-09-15
2015-01-2562
This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
Technical Paper

Comparison of the Exhaust Emissions of Diesel Fuels Derived from Oil Sands and Conventional Crude Oil

1998-10-19
982487
The effects of fuel properties of both oil-sands-derived and conventional-crude-oil-derived diesel fuels were investigated on a single-cylinder DI research engine. The engine used in this study incorporated features of contemporary medium- to heavy-duty diesel engines and was tuned to the U.S. EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included 12 fuels blended using refinery streams to have controlled total aromatic levels and 7 other diesel fuels obtained from different sources. The results showed that at a constant cetane number (44) and sulfur content (150 ppm), oil-sands-derived fuels produced similar NOx emissions as their conventional-crude-oil-derived counterparts and total aromatic content and fuel density could be used in a regression model to predict NOx emissions.
Journal Article

Aerodynamic Performance of Flat-Panel Boat-Tails and Their Interactive Benefits with Side-Skirts

2016-09-27
2016-01-8015
This paper describes an investigation of the performance potential of conventional flat-panel boat-tail concepts applied to tractor-trailer combinations. The study makes use of data from two wind-tunnel investigations, using model scales of 10% and 30%. Variations in boat-tail geometry were evaluated including the influence of length, side-panel angle and shape, top-panel angle and vertical position, and the presence of a lower panel. In addition, the beneficial interaction of the aerodynamic influence of boat-tails and side-skirts that provides a larger drag reduction than the sum of the individual-component drag reductions, identified in recent years through wind-tunnel tests in different facilities, has been further confirmed. This confirmation was accomplished using combinations of various boat-tails and side-skirts, with additional variations in the configuration of the tractor-trailer configuration.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Technical Paper

Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

2015-06-15
2015-01-2116
This paper presents measurements of ice accretion shape and surface temperature from ice-crystal icing experiments conducted jointly by the National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada. The data comes from experiments performed at NRC's Research Altitude Test Facility (RATFac) in 2012. The measurements are intended to help develop models of the ice-crystal icing phenomenon associated with engine ice-crystal icing. Ice accretion tests were conducted using two different airfoil models (a NACA 0012 and wedge) at different velocities, temperatures, and pressures although only a limited set of permutations were tested. The wedge airfoil had several tests during which its surface was actively cooled. The ice accretion measurements included leading-edge thickness for both airfoils. The wedge and one case from the NACA 0012 model also included 2D cross-section profile shapes.
Technical Paper

Progress towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach

2015-06-15
2015-01-2162
We have developed an original, three-dimensional icing modelling capability, called the “morphogenetic” approach, based on a discrete formulation and simulation of ice formation physics. Morphogenetic icing modelling improves on existing ice accretion models, in that it is capable of predicting simultaneous rime and glaze ice accretions and ice accretions with variable density and complex geometries. The objective of this paper is to show preliminary results of simulating complex three-dimensional features such as lobster tails and rime feathers forming on a swept wing. The results are encouraging. They show that the morphogenetic approach can predict realistically both the overall size and detailed structure of the ice accretion forming on a swept wing. Under cold ambient conditions, when drops freeze instantly upon impingement, the numerical ice structure has voids, which reduce its density.
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
X