Refine Your Search

Topic

Author

Search Results

Technical Paper

Diesel/Soy Methyl Ester Blends Emissions Profile from a Passenger Vehicle Operated on the European and the Athens Driving Cycles

2007-10-29
2007-01-4043
The need of a more realistic and dynamic driving cycle which simulates real-world driving conditions in the largest city in the greater area of Balkans, led to the development of the Athens Driving Cycle (ADC). Emission and fuel consumption measurements were conducted over the ADC and compared with those of the New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, fuelled with a typical automotive diesel fuel and biodiesel blends at proportions of 5, 10, and 20 % respectively. The unregulated emissions were characterized by determining the soluble organic fraction (SOF) in the particulate matter, together with qualitative hydrocarbon analysis present in the SOF fraction, and of carbonyl compounds (aldehydes, ketones). Emissions of NOx, CO, THC, CO2, and PM10 were also measured over the two test cycles.
Technical Paper

Parametric Study of the Availability Balance in an Internal Combustion Engine Cylinder

2001-03-05
2001-01-1263
The current work uses a method developed by the authors for both combustion irreversibility and working medium availability computations in a high speed, naturally aspirated, four stroke, internal combustion engine cylinder. The objective of the study was to extrapolate already published results of the second-law analysis of diesel engine operation by studying parametrically the effect of main operating parameters such as engine speed of rotation, injection timing, and fuel composition. Extensive experimental data were available for the case of dodecane injection, which were used for the determination of the fuel reaction rate. Computationally, the same reaction rates were used for methane and methanol injection. The production rate of irreversibility during combustion was analytically calculated as a function of the fuel reaction rate with the combined use of first and second-law arguments and a chemical equilibrium hypothesis.
Technical Paper

Using Advanced Injection Timing and EGR to Improve DI Diesel Engine Efficiency at Acceptable NO and Soot Levels

2001-03-05
2001-01-0199
The direct injection diesel engine is one of the most efficient thermal engines known to man. For this reason DI diesel engines are widely used for heavy-duty applications and especially for the propulsion of trucks. Even though the efficiency of these engines is currently at a high level there still exist possibilities for further improvement. One way to accomplish this is by increasing the injection timing which usually improves, depending on the operating conditions, the indicated efficiency of the engine. On the other hand advanced injection timing has a negative effect on peak pressure causing a serious increase of its value, a negative effect on NO emissions which are also seriously increased and a positive effect on Soot emissions which are reduced. In the present work a theoretical and experimental investigation is presented to determine the effect of more advanced injection timing on engine performance and pollutant emissions.
Technical Paper

The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR

2001-03-05
2001-01-0198
Pollutant emissions and specifically NO and soot are one of the most important problems that engineers have to face when developing heavy duty DI diesel engines. Two main strategies exist as options for their control, reduction inside the engine cylinder using advanced combustion and fuel injection technologies and use of after-treatment systems. In the present work it is examined the use of EGR to control the formation of NO inside the cylinder of an engine with extremely high peak pressure. The work is applied on a single cylinder truck test engine developed under a project funded by the European Community focusing on the improvement of heavy duty DI diesel engine efficiency using increased injection timing. Use is made of a simulation model to predict the effect of more advanced injection timing on engine performance and emissions. The model has been modified to include the effect of EGR used to c ontrol the formation of NO which is considerably increased at high injection timings.
Technical Paper

Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine

2006-04-03
2006-01-1673
During the last years a great effort has been made by many NATO nations to move towards the use of one military fuel for all the land-based military aircraft, vehicles and equipment employed on the military arena. This idea is known to as the Single Fuel Concept (SFC). The fuel selected for the idea of SFC is the JP-8 (F-34) military aviation fuel which is based upon the civil jet fuel F-35 (Jet A-1) with the inclusion of military additives possessing anti-icing and lubricating properties. An extended experimental investigation has been conducted in the laboratory of Thermodynamic and Propulsion Systems at the Hellenic Air Force Academy. This investigation was conducted with the collaboration of the respective laboratories of National Technical University of Athens and Hellenic Naval Academy as well.
Technical Paper

Effect of Metals in the Oxidation Stability and Lubricity of Biodiesel Fuel

2009-06-15
2009-01-1829
The introduction to the European market of higher levels of biodiesel blends focuses the research interest on the compatibility problems of the diesel fuel distribution system. The influence of metals in the oxidation stability and lubricity of two different types of commercially available FAMEs (without antioxidant additive) was investigated. Zinc (Zn), Copper (Cu) and Tin (Sn), were added in the form of solid metals (heterogeneous catalysis in liquid phase oxidation) and examined for their impact on the oxidation stability of biodiesel fuel. Oxidation stability was determined by Rancimat accelerated oxidation method, according to European Standard EN14214. Additionally, in order to examine the effect of the above mentioned metals in the presence of antioxidant additive, BHT was added in both biodiesel samples and oxidation stability determinations were carried out, as well.
Technical Paper

The Effect of Biodiesel on PAHs, Nitro-PAHs and Oxy-PAHs Emissions from a Light Vehicle Operated Over the European and the Artemis Driving Cycles

2009-06-15
2009-01-1895
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
Technical Paper

Determination of Physicochemical Properties of Fatty Acid Ethyl Esters (FAEE) - Diesel Fuel Blends

2009-06-15
2009-01-1788
In this study, the transesterification process of 4 different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) took place utilizing ethanol, in order to characterize the ethyl esters and their blends with diesel fuel obtained as fuels for internal combustion engines. All ethyl esters were synthesized using calcium ethoxide as a heterogeneous solid base catalyst. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil, the molar ratio of ethanol to oil, and the reaction temperature were studied on conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, catalyst amount (3.5%), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 80.5%.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Technical Paper

Development of a New Multi-Zone Model for the Description of Physical Processes in HCCI Engines

2004-03-08
2004-01-0562
Homogeneous Charge Compression Ignition (HCCI) engines have the potential of reducing NOx emissions as compared to conventional Diesel or SI engines. Soot emissions are also very low due to the premixed nature of combustion. However, the unburned hydrocarbon emissions are relatively high and the same holds for CO emissions. The formation of these pollutants, for a given fuel, is strongly affected by the temperature distribution as well as by the charge motion within the engine cylinder. The foregoing physical mechanisms determine the local ignition timing and burning rate of the charge affecting engine efficiency, performance and stability. Obviously the success of any model describing HCCI combustion depends on its ability to describe adequately both the chemistry of combustion and the physical phenomena, i.e. heat and mass transfer within the cylinder charge. In the present study a multi-zone model is developed to describe the heat and mass transfer mechanism within the cylinder.
Technical Paper

Effect of Phenolic Type Antioxidant Additives on Microbial Stability of Biodiesel Fuel

2017-10-08
2017-01-2334
The aim of this study was to investigate the effect of a variety of phenolic type antioxidant additives on the microbial stability of biodiesel and diesel/biodiesel blends. Six synthetic phenolic type antioxidant agents were added in FAME at concentrations up to 1000 ppm. Treated FAME was also blended with Ultra Low Sulfur Diesel (ULSD) fuel at a concentration of 7% v/v in order to examine the activity of the substances in the final blends. The oxidation stability in the presence of the phenolic compounds was determined by carrying out measurements under accelerated oxidation process in the Rancimat unit. The effectiveness of those antioxidant agents against microbial contamination in biodiesel fuel was studied under certain testing protocols for detecting microbiological activity in the fuel supply chain and for evaluating antimicrobials against fuel bio-deterioration.
Technical Paper

A Study on Microbial Contamination of Alcohol-Blended Unleaded Gasoline

2016-10-17
2016-01-2259
The fuel supply chain faces challenges associated with microbial contamination symptoms. Microbial growth is an issue usually known to be associated with middle distillate fuels and biodiesel, however, incidents where microbial populations have been isolated from unleaded gasoline storage tanks have also been recently reported. Alcohols are employed as gasoline components and the use of these oxygenates is rising, especially ethanol, which can be a renewable alternative to gasoline, as well. Despite their alleged disinfectant properties, a number of field observations suggests that biodeterioration could be a potential issue in fuel systems handling ethanol-blended gasoline. For this reason, in this study, the effect of alcohols on microbial proliferation in unleaded gasoline fuel was assessed. Ethanol (EtOH), iso-propyl alcohol (IPA) and tert-butyl-alcohol (TBA) were evaluated as examples of alcohols utilized in gasoline as oxygenates.
Technical Paper

Experimental Investigation of the Effect of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel Engines

1999-03-01
1999-01-0189
A great deal of research is taking place at the present time in the field of diesel engines, especially regarding the emission of gaseous pollutants and soot. This research is essential for engine manufacturers since it is difficult for diesel engines to meet current standards regarding soot and nitric oxide emissions. The problem will become even more severe when the new legislation will be applicable requiring a 50% reduction of existing levels. Many manufacturers and researchers feel that engines will be difficult to meet this criterion without the use of other techniques such as gas aftertreatment or newly developed fuels (low sulfur content, etc.). The aim of this research is to examine the effect of fuel composition and physical properties on the mechanism of combustion and pollutants formation.
Technical Paper

Development and Validation of a Detailed Fuel Injection System Simulation Model for Diesel Engines

1999-03-01
1999-01-0527
The fuel injection system of diesel engines is of great importance since it controls the combustion mechanism. The rate of injection and the speed of injected fuel are important parameters for engine operation, controlling the combustion and pollutants formation mechanisms. A fuel injection system simulation capable of predicting the performance of the injection system to a good degree of accuracy has been developed. The simulation is based on a detailed geometrical description of the injection system and in modeling each subsystem as a separate control volume. The simulation starts at the driving mechanism of the fuel pump and describes all parts of the system pump chamber, delivery valve, delivery chamber, connecting pipe and injector. The components of the system are put together and interact as they do in reality. From the cam geometry an analytical expression is derived that gives the pump piston lift as a function of the engine crank angle.
Technical Paper

Assessment of the Lubricity of Greek Road Diesel and the Effect of the Addition of Specific Types of Biodiesel

1999-05-03
1999-01-1471
This work includes an assessment of the lubricity of Greek road diesel fuel of low sulfur content, and the effect of the addition of two different types of biodiesel which can be produced from raw materials abundant in the Mediterranean area. In this study, a series of representative fuels of the Greek fuel market were tested. In some of them, the lubricity was measured three times, during a period of three months from the day of each sample was produced. In all cases a decrease of the wear scar diameter (WSD) was measured; this behaviour could be attributed to the oxidation reactions that take place during the storage period. In order to monitor the effect of the addition of biodiesel on the lubricity of road diesel, biodiesels produced from sunflower oil and olive oil were used. The use of rape seed oil biodiesel as a diesel fuel substitute is a commercial event in Central Europe; in the United States the soybean oil biodiesel has been examined in detail.
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

2017-10-08
2017-01-2320
FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Technical Paper

The Impact of Aliphatic Amines and Tertiary Amides on the Lubrication Properties of Ultra Low Sulfur Diesel Fuels

2000-06-19
2000-01-1916
The objective of this work was the assessment of aliphatic amines and tertiary dialkyl-amides as lubrication additives or extenders, on ultra - low sulfur diesel fuels. In order to evaluate the influence of two types of nitrogen compounds on the lubrication properties of ultra - low sulfur diesel fuels, nine distillation fractions produced by atmospheric distillation of a hydrotreated diesel fuel, were used as the base fuels. Five aliphatic amines and two tertiary amides were used as lubricating additives at five different concentrations i.e. 0.5, 1.0, 2.0, 4.0 and 6.0% by volume, on the nine base fuels. Tribological experiments were carried out on the High frequency Reciprocating test Rig (HFRR). The wear results showed that only four of the five aliphatic amines used, provide satisfactory HFRR mean wear scar diameter (WS 1.4) of less than 460 microns, and at the concentration levels of 1-2% by volume. The concentration levels below 1 % by volume had no effect on the fuel lubricity.
Technical Paper

Development of a Simulation Model for Direct Injection Dual Fuel Diesel-Natural Gas Engines

2000-03-06
2000-01-0286
During the last years a great deal of effort has been made for the reduction of pollutant emissions from direct injection Diesel Engines. Towards these efforts engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines are referred to as dual combustion engines i.e. they use conventional diesel fuel and gaseous fuel as well. The ignition of the gaseous fuel is accomplished through the liquid fuel, which is auto-ignited in the same way as in common diesel engines. One of the fuels used is natural gas, which has a relatively high auto-ignition temperature. This is extremely important since the CR of most conventional diesel engines can be maintained. In these engines the released energy is produced partially from the combustion of natural gas and from the combustion of liquid diesel fuel.
Technical Paper

Available Strategies for Improving the Efficiency of DI Diesel Engines-A Theoretical Investigation

2000-03-06
2000-01-1176
The Diesel engine and especially the direct injection type one is considered to be one of the most efficient thermal engines known to man up to now. It has an efficiency that in some cases is 30 to 40% higher than its competitor the spark ignition engine. The efficiency of the direct injection diesel engine has been considerably improved during the last decade resulting to low fuel consumption and lower absolute values of pollutant emissions. If we consider the green house effect caused by the emitted CO2 it is revealed the environmental importance of high engine efficiency. In the present work a theoretical investigation is conducted using a detailed simulation model for engine performance prediction, to examine the possibilities for improving engine efficiency. The simulation model used is a complete open cycle model for the engine and its subsystems. Such phenomenological models are very suitable for the prediction of engine performance.
Technical Paper

Development of New 3-D Multi-Zone Combustion Model for Indirect Injection Diesel Engines with a Swirl Type Prechamber

2000-03-06
2000-01-0587
During the past years most fundamental research worldwide has been concentrated on the direct injection diesel engine (DI). This engine has a lower specific fuel consumption when compared to the indirect injection diesel engine (IDI) used up to now in most passenger cars. But the application of the direct injection engine on passenger cars and light trucks has various problems. These are associated mainly with its ability to operate at high engine speeds due to the very low time available for combustion. To overcome these problems engineers have introduced various techniques such as swirl and squish for the working fluid and the use of extremely high pressure fuel injection systems to promote the air-fuel mixing mechanism. The last requires the solution of various problems associated with the use of the high pressure and relatively small injector holes.
X