Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

Development of High Performance Catalyst Temperature Sensor for NOx Catalyst Control

1999-03-01
1999-01-0615
The development of new systems to reduce exhaust gases is being investigated in response to OBD-II regulations and regulations all over the world relating to the introduction of low exhaust gas vehicles (LEV, ULEV, STEP3, STEP4). We have developed a highly responsive thermistor type catalyst temperature sensor that is very accurate, highly heat resistant, has a wide detection range, and that can be used in exhaust gas cleansing systems. The key technologies used in this new catalyst temperature sensor are: 1 Wide detection range: The thermistor is of a network construction that comprises a semi-conductor with a new Y-Cr-Mn perovskite crystal structure and an insulator. The temperature range can be set by changing the proportions of semi-conductor and insulator.
X