Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
Technical Paper

Prediction of cooling flow rate through the front grille using flow analysis with a multi-level mesh system

2000-06-12
2000-05-0306
A flow analysis method with quick turnaround time has been studied for application to flows in the engine compartment of vehicles. In this research, a rapid modeling method based on the Cartesian mesh system was developed to obtain flow field information quickly. With this modeling method, the original shape is approximated by many small cubic cells, allowing automatic mesh generation in significantly less time. Moreover, a hierarchical mesh system that reduces the total number of meshes has been introduced. This multi-level mesh system is also highly capable of representing shapes in detail. Another important issue in flow calculations in the engine bay is the treatment of the boundary conditions such as the radiator and cooling fan. With the proposed method, the fluid dynamics characteristics of such components are measured, and characteristics such as the pressure loss/gain and the rotational vector of the fan are reflected in the flow field as empirical models.
Technical Paper

Swirl Controlled 4-Valve Engine Improves in Combustion under Lean Air-Fuel Ratio

1987-11-08
871172
Since a 4-valve engine is less flexible in the design and location of the intake ports as compared with a conventional 2-valve engine, there are some difficulties in strengthening the air motion, including swirl and turbulence, in order to achieve stable combustion under lean mixture operation. This study examined air motion imporvements of 4-valve engine that result in a stable combustion with a lean mixture. These improvements are brought about by the installation of a swirl control valve in each intake port. The results of this study have clarified that the lean stable limit was extended from an air-fuel ratio of 21.5 to 26.3 under a partial load, by optimizing the location and diameter of aperture of the swirl control valve.
Technical Paper

A Unique Dual-Mode Muffler

1989-11-01
891356
The techniques harmonizing the contradiction which consists of exhaust noise reduction and engine power increase, have been required for the exhaust muffler. This techniques rapidly improved by means of the clarification due to the acoustic theories and the flow analyses. Recently, according to the passenger car tendency toward high grade and high performance, demands for low noise and high power exhaust systems are increasing year by year. The “Dual Mode Muffler” system (abbreviated, below, DMM) mounted on Nissan Cedric, Grolia and Cima series, installed in 1987, is achieved the consistent of the quietness and the engine power performance. This system is the first control type exhaust system for the 4 wheel car. On previous paper, the analyses of acoustic characteristics on DMM were mainly shown. The analyses of exhaust pressure characteristics are also an important theory along with the acoustic in the development of the exhaust system.
Technical Paper

Radiation Noise Due to Longitudinal Vibration of the Exhaust Pipe

1985-11-11
852266
The front exhaust pipe and the heat-shield plate of the catalytic converter are excited by the engine vibration. Noise radiation occurs on their surface. Concerning vehicle exterior noise, noise radiated from the exhaust system is often one of major sources as well as engine and exhaust noise. This paper describes the longitudinal vibration model-as a beam-is applied to the high frequency vibration that causes the noise radiated from the exhaust system. It describes also some methods of reducing such noise radiation by isolating the vibration from the front exhaust pipe. These methods are: adding mass to the front pipe, changing the material of the front pipe to a smaller Young's modulus one, installing flexible pipe composed by two sections, and so on.
Technical Paper

Development of Diesel Engine System with DPF for the European Market

2007-04-16
2007-01-1061
Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

Development of Microalloyed Steel for Fracture Split Connecting Rod

2007-04-16
2007-01-1004
In Europe and the U.S., fracture split connecting rods are used in many types of current engines. This process can eliminate the machining of crankshaft end and eliminate the dowel pin for positioning. The most important key for fracture split connecting rods is a reduction in the plastic deformation during the fracture splitting process. For this reason, sinter-forged materials and pearlitic steels (C70S6) are used for fracture split connecting rods because of their low ductility. Such types of steel, however, are inferior to the hot forged microalloyed steels typically used as connecting rod material in Japan in terms of buckling strength and machinability although they are easier to fracture split. On the other hand, the conventional microalloyed steels used for connecting rods in Japan are not suitable for fracture splitting. The reason is that these steels have too much ductility and associated plastic deformation for fracture splitting.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

2004-03-08
2004-01-1227
Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

2013-03-25
2013-01-0009
Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Technical Paper

Experimental Studies on a Natural Gas Vehicle

1994-10-01
942005
This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much lower in the lean-mixture region for the NGV. The reduced efficiency was traced to lower conversion and poor reactivity of low-end hydrocarbons and to a higher concentration of H2O.
Technical Paper

Turbulence and Cycle-by-Cycle Variation of Mean Velocity Generated by Swirl and Tumble Flow and Their Effects on Combustion

1995-02-01
950813
Combinations of swirl flow and tumble flow generated by 13 types of swirl control valve were tested by using both impulse steady flow rig and LDV. Comparison between the steady flow characteristics and the result of LDV measurement under motoring condition shows that tumble flow generates turbulence in combustion chamber more effectively than swirl flow does, and that swirling motion reduces the cycle by cycle variation of mean velocity in combustion chamber which tends to be generated by tumbling motion. Performance tests are also carried out under the condition of homogeneous charge. Tumble flow promotes the combustion speed more strongly than expected from its turbulence intensity measured by LDV. It is also shown that lean limit air fuel ratio does not have a strong relation with cycle variation of mean velocity but with turbulence intensity.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

1995-02-01
950807
In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Development of an Engine Mount Optimization Method Using Modal Parameters

1993-10-01
932898
The purpose of this study was to develop a simple optimization method for use in designing vibration insulators. With this method, stiffness, location and inclination of each insulator are used as design parameters. A performance index consisting of vehicle modal parameters expressed as eigenvalues and eigenvectors has been constructed to evaluate low-frequency idle/shake performance and higher frequency vibration performance involving road/engine inputs. Using this performance index and the sensitivity of the modal parameters, a designer can easily find a suitable direction for optimizing mount performance and thereby obtain a stable solution. The new method was employed to optimize an engine mount system. Experimental data obtained on the system validated the accuracy of the calculated results and showed an improvement in idle/shake performance. This method is a useful tool in designing optimum vibration insulators.
Technical Paper

Practical Challenges on Yokohama Mobility “Project ZERO” - Towards next generation mobility for low-carbon future

2010-10-19
2010-01-2346
Reduction of greenhouse gases or CO2 is the global issue for sustainability. City of Yokohama, where 3.7 million people live, established the Yokohama Climate Change Action Policy “CO-DO30”, aiming to cut down on greenhouse gas emissions by over 30% per person by 2025, and by over 60% by 2050. “CO-DO30” includes 7 areas of approaches, such as Living, Businesses, Buildings, Transportation, Energies, Urban and Green, and City Hall. To achieve this challenging target, practical and effective action on transportation area is definitely required, because it emits 20% of total greenhouse gas emission in the city. In 2008, City of Yokohama and Nissan jointly started YOKOHAMA Mobility “Project ZERO” (YMPZ), a 5-year project aimed at realizing “Eco-Model City, Yokohama”.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
X