Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Development of Diesel Engine System with DPF for the European Market

2007-04-16
2007-01-1061
Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

JamaS Study on the Location of In-Vehicle Displays

2000-11-01
2000-01-C010
JAMA (Japan Automobile Manufactures Association, Inc.)'s guideline for car navigation systems is being decided on displayed the amount of information while driving. The position of a display and the estimated equation, which could be applied from a passenger car to a heavy truck, was studied. The evaluation index was the distance which drivers could become aware of a preceding vehicle by their peripheral vision, because car accidents while drivers glance at an in- vehicle display are almost the rear end collisions. As the results, the lower limit of a position of an in-vehicle display for a passenger car was 30 degrees, and a heavy truck was 46 degrees.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

2004-03-08
2004-01-0985
This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

A Study of a Gasoline-fueled HCCI Engine∼Mode Changes from SI Combustion to HCCI Combustion∼

2008-04-14
2008-01-0050
Since the stable operating region of a gasoline-fueled HCCI engine is limited to the part load condition, a mode change between SI and HCCI combustion is required, which poses an issue due to the difference in combustion characteristics. This report focuses on the combustion characteristics in the transitional range. The combustion mode in the transitional range is investigated by varying the internal EGR rate, intake air pressure, and spark advance timing in steady-state experiments. In this parametric study, stable SI-CI combustion is observed. This indicates that the combustion mode transition is possible without misfiring or knocking, regardless of the speed of variable valve mechanism which includes VVA, VVEL, VTEC, VVL and so on, though the response of intake air pressure still remains as a subject to be examined in the actual application.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Journal Article

Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine

2015-04-14
2015-01-0902
To improve the fuel economy via high EGR, combustion stability is enhanced through the addition of hydrogen, with its high flame-speed in air-fuel mixture. So, in order to realize on-board hydrogen production we developed a fuel reformer which produces hydrogen rich gas. One of the main issues of the reformer engine is the effects of reformate gas components on combustion performance. To clarify the effect of reformate gas contents on combustion stability, chemical kinetic simulations and single-cylinder engine test, in which hydrogen, CO, methane and simulated gas were added to intake air, were executed. And it is confirmed that hydrogen additive rate is dominant on high EGR combustion. The other issue to realize the fuel reformer was the catalyst deterioration. Catalyst reforming and exposure test were carried out to understand the influence of actual exhaust gas on the catalyst performance.
Technical Paper

Digital Engine Controller

1980-06-01
800825
An electronic engine control system that uses a microcomputer has been developed. It combines four control systems - fuel injection, ignition timing, EGR and idle speed control - utilizing the engine speed and intake air quantity for its main parameters. The control circuit is composed of an 8-bit microcomputer combining an 8k byte ROM, RAM, a custom designed input/output LSI, and two hybrid integrated circuits, one has voltage regulators and another has input/output interface circuits. The control program consists of a main program, a fail-safe program for noise protection and a check program for diagnostic functions. The main program uses interrupt techniques to control effectively the four items by one microcomputer. The interrupt requests occur from crankshaft position signal and interval timer signals.
Technical Paper

Venturi Vacuum Transducer Enables Heavy EGR Control

1980-06-01
800824
In order to significantly reduce NOx levels by EGR (Exhaust Gas Recirculation), while maintaining good fuel economy and driveability, the EGR flow rate must be properly and accurately controlled under a variety of engine operating conditions. Toward this objective, a new EGR control system was developed. It utilizes a carburetor venturi vacuum for a stable reference signal that represents the engine operating condition and it controls the EGR flow rate by using a feedback principle to obtain sufficient flexibility compatible with several different engines. Its control characteristics were mathematically analyzed. And it has also been confirmed that the system can automatically compensate for the drift in EGR characteristics. This EGR control system has been utilized in Nissan’s emission control systems in order to comply with the 1978 Japanese Emission Standards and the 1980 U.S. Federal and California Emission Standards.
Technical Paper

Heat Capacity Changes Predict Nitrogen Oxides Reduction by Exhaust Gas Recirculation

1971-02-01
710010
Earlier work has demonstrated that exhaust gas recirculation (EGR) decreases peak combustion temperature and thus reduces the concentration of nitrogen oxides (NOx) in spark ignition engine exhaust. The present authors hypothesized that NOx formation is primarily affected by the heat capacity of the combustion gases and recycled exhaust. The hypothesis was tested in an experimental program involving the admission of inert gases such as He, Ar, H2, and CO2, and water in place of EGR. In addition to confirming the validity of the original hypothesis, the test data also indicated that engine output and efficiency were significantly affected by the heat capacity of the combustion gases. The authors conclude that EGR functions by increasing the heat capacity of the working fluid, and demonstrates that the correlative changes in NOx and engine performance can be predicted from heat capacity considerations.
Technical Paper

Positioning System with Vision Sensor for Automatic Arc Welding

1986-02-01
860607
This report describes an arc-welding robot system with a vision sensor which Nissan Motor Co., Ltd. has introduced to automate the arc welding line for truck frames. Developed in-house, this system is now in operation on the arc welding line for Nissan Truck frames at Nissan's Kyushu plant. In developing the system, primary emphasis was placed on assuring practicality and high reliability. Included among the prominent features of the system is the capability to detect the welding line of thin panels with a high degree of accuracy and to calculate corrections when needed. To assure the high speed and reliability needed for the production line, the robot and sensor are separated, and the vision sensors are placed at fixed positions. Detection of the welding line and transmission of data to the robots to correct their positions are completed just prior to welding, so as to avoid the effects of noise and the arc flash during welding.
Technical Paper

Study on Parameters Affecting NMOG Measurements and a Method to Improve its Accuracy

1993-03-01
930387
Nissan has developed a non-methane organic gas (NMOG) emission measuring method based on California Air Resources Board (CARB) procedures.1) In addition, a system to analyze the chemical species present in the exhaust gases at Low Emission Vehicles (LEV) and Ultra Low Emission Vehicles (ULEV) levels has been created. It was found that when using an electrically heated catalyst (EHC) to achieve the low emissions for LEV and ULEV levels, the interference between exhaust HC species and the contamination of the analyzing system are a serious problem for the measurement of speciated emissions. The methyl tertiary butyl ether (MTBE) contained in reformulated gasoline can interfere with HC speciation in the Chromatogram, requiring that the automatically speciated results be checked by a trained operator. The low exhaust HC emissions of bags 2 and 3 in the Federal Test Procedure (FTP) are nearly equal to that of the background air utilized in the constant volume sampler (CVS) dilution.
Technical Paper

Engine-Out and Tail-Pipe Emission Reduction Technologies of V-6 LEVs

1998-02-23
980674
Compared with in-line 4-cylinder engines, V-6 engines show a slower rise in exhaust gas temperature, requiring a longer time for catalysts to become active, and they also emit higher levels of engine-out emissions. In this study, The combination of a new type of catalyst, and optimized ignition timing and air-fuel ratio control achieved quicker catalyst light-off. Additionally, engine-out emissions were substantially reduced by using a swirl control valve to strengthen in-cylinder gas flow, adopting electronically controlled exhaust gas recirculation (EGR), and reducing the crevice volume by decreasing the top land height of the pistons. A vehicle incorporating these emission reduction technologies reduced the emission level through the first phase of the Federal Test Procedure (FTP) by 60-70% compared with the Tier 1 vehicle.
Technical Paper

A Study of a Gasoline-Fueled Near-Zero-Emission Vehicle Using an Improved Emission Measurement System

1998-10-19
982555
This paper concerns research on an emission control system aimed at reducing emission levels to well below the ULEV standards. As emission levels are further reduced in the coming years, it is projected that measurement error will increase substantially. Therefore, an analysis was made of the conventional measurement system, which revealed the following major problems. 1. The conventional analyzer, having a minimum full-scale THC range of 10 ppmC, cannot measure lower concentration emissions with high accuracy. 2. Hydrocarbons are produced in various components of the measurement system, increasing measurement error. 3. Even if an analyzer with a minimum full-scale THC range of 1 ppmC is used in an effort to measure low concentrations, the 1 ppmC measurement range cannot be applied when the dilution air contains a high THC concentration. This makes it impossible to obtain highly accurate measurements. 4.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

1995-02-01
950807
In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
X