Refine Your Search




Search Results

Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

Small Car Safety and Esv Specifications

Nissan's Experimental Safety Vehicle is a small-sized passenger car. "Small-sized" means small in overall dimensions and light weight. Differences between the Japanese 2,500 pound ESV and the 4,000 pound ESV specifications are outlined. This paper discusses small car safety and ESV specifications
Technical Paper

A Study of Laser Radar

Various radar systems have been proposed as collision avoidance sensors for automatic braking and warning applications. Practical use of laser radar systems is near with the introduction of high power, high reliability laser diodes. Utilizing these new devices, a laser radar system has been adapted for measuring the distance to objects in its path. It was first shown that reflectors on the rear of the automobile possess high reflectivity and sharp directivity. Given these characteristics, a compact laser radar system was tested that employed 12W laser diodes and PIN photodiodes. The maximum range of approximately 100 m was obtained. Furthermore, the ability to discriminate other vehicles from roadside objects was achieved by detecting discontinuity in measured distance data through a microprocessor. These results show that the performance of laser radar is comparable to that of microwave radar.
Technical Paper

Radiation Noise Due to Longitudinal Vibration of the Exhaust Pipe

The front exhaust pipe and the heat-shield plate of the catalytic converter are excited by the engine vibration. Noise radiation occurs on their surface. Concerning vehicle exterior noise, noise radiated from the exhaust system is often one of major sources as well as engine and exhaust noise. This paper describes the longitudinal vibration model-as a beam-is applied to the high frequency vibration that causes the noise radiated from the exhaust system. It describes also some methods of reducing such noise radiation by isolating the vibration from the front exhaust pipe. These methods are: adding mass to the front pipe, changing the material of the front pipe to a smaller Young's modulus one, installing flexible pipe composed by two sections, and so on.
Technical Paper

Development of Diesel Engine System with DPF for the European Market

Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

Real World Injury Patterns in Narrow Object Frontal Crashes: An Analysis of US Field Data

Analyses were performed using field data for belted drivers of light vehicles in frontal crashes to examine the frequency and severity of frontal crashes with narrow objects. This study examined the distribution of injuries by body region, crash severity, and single- versus multiple-vehicle crashes for narrow object and all other crashes. Factors influencing injuries in different types of frontal crashes were identified, and risk of injury to belted drivers in narrow object crashes versus other frontal crashes was examined. A detailed review of about 400 NASS cases involving narrow object crashes was also performed. Results indicate frontal crashes involving impact with poles, posts, or trees are relatively infrequent. Overall, the fatal risk for belted drivers is lower in narrow object crashes than in other types of frontal crashes.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Journal Article

Connected Vehicle Accelerates Green Driving

After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Technical Paper

Experimental Studies on a Natural Gas Vehicle

This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much lower in the lean-mixture region for the NGV. The reduced efficiency was traced to lower conversion and poor reactivity of low-end hydrocarbons and to a higher concentration of H2O.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Practical Challenges on Yokohama Mobility “Project ZERO” - Towards next generation mobility for low-carbon future

Reduction of greenhouse gases or CO2 is the global issue for sustainability. City of Yokohama, where 3.7 million people live, established the Yokohama Climate Change Action Policy “CO-DO30”, aiming to cut down on greenhouse gas emissions by over 30% per person by 2025, and by over 60% by 2050. “CO-DO30” includes 7 areas of approaches, such as Living, Businesses, Buildings, Transportation, Energies, Urban and Green, and City Hall. To achieve this challenging target, practical and effective action on transportation area is definitely required, because it emits 20% of total greenhouse gas emission in the city. In 2008, City of Yokohama and Nissan jointly started YOKOHAMA Mobility “Project ZERO” (YMPZ), a 5-year project aimed at realizing “Eco-Model City, Yokohama”.
Technical Paper

Development of a New 5.6 L V8 Gasoline Engine

This paper describes the new VK56VD engine, which was developed in response to growing demand for cleaner automobiles, better fuel economy, and improved engine performance. A 5.6 L V8 engine, the VK56VD will go into the new Infiniti M56 premium sport luxury sedan. To boost power and efficiency and lessen its environmental impact, this engine will utilize key technologies such as Continuous Variable Valve Event and Lift (VVEL) and Direct Injection Gasoline (DIG). Details of the VK56VD are presented here along with highlights of the applied technologies and the development means.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Automatic Falling Occupant Protecting Net - Preliminary Study

An automatic, falling, occupant-protecting net is being developed for spreading in front of automobile occupants in the time interval between vehicle impact and occupant collision. The device is designed to counteract forward body acceleration and minimize head, neck, and chest injuries. This device was investigated by sled and barrier tests using anthropomorphic dummies. Significant improvements in occupant kinematics and remarkable reduction in head and chest impact force has been observed. Some problems such as whiplash injury await solution but continuing investigation of proposed measures of correction show that they are not insurmountable.
Technical Paper

On Crashworthiness of Nissan ESV

It is very difficult for small cars to protect occupants in high-speed collisions. The Nissan ESV is of lightweight monocoque construction, and its body possesses crashworthiness designed to match the occupant protection system. This vehicle has experimentally proved to be effective in occupant protection. This paper primarily deals with the most difficult problem of crashworthiness in frontal collisions, first referring to the basic analyses and test results acquired in the development process, and then setting forth the body construction and test results of the two types of Nissan ESV (E1 and E2).
Technical Paper

Economical Matching of the Thermal Reactor to Small Engine-Low Emission Concept Vehicles

The Inter-Industry Emission Control (IIEC) Program included the thermal reactor as one of the effective ways of oxidizing HC and CO in the exhaust system. However, this was accompanied by very substantial fuel economy penalties, especially in the case of small engine-low emission concept vehicles. Starting with a new concept aimed at obtaining the HC/CO oxidizing trigger temperature in the thermal reactor by modifying engine settings, the authors arrived at an economical technique of matching the thermal reactor to the engine.
Technical Paper

Real World Accident Analysis of Driver Car-to-Car Intersection Near-Side Impacts: Focus on Impact Location, Impact Angle and Lateral Delta-V

In total, 865 intersection car-to-car crashes (NASS-CDS CY 2004-2014) are analyzed in detail to determine the injury level outcome based on different crash factors, such as delta-V, age, airbag deployment, number of events, impact locations (F,Y,P,Z,D,B-regions based on CDC codes), amount of compartment intrusion and impact angle. A multivariate logistic regression test was performed to predict the probability of MAIS3+ serious injuries using lateral delta-V, location of maximum deformation from B-PLR, age (0: <60/1: ≥60 years), number of events (0: single/ 1: multiple), intrusion (0: <16cm/ 1: ≥16cm), side airbag deployment (yes/no) and direction of impact (0: 9/ 1: 10 o’clock). It is found that direction of impact is one of the significant (p<0.05) parameters and 10 o’clock angle impact has more influence than 9 o’clock perpendicular lateral impact. Frequency of AIS3+ injuries was high in Y-region impact cases.