Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Journal Article

Status of FCV Development at Nissan and Future Issues

2008-04-14
2008-01-0423
In the “Nissan Green Program 2010”, released in December 2006, Nissan Motor Co., Ltd. announced plans to offer advanced technology and products to further real-world reductions in CO2 emissions. One solution is the development of a practical fuel cell vehicle (FCV). In 1996, Nissan began developing an FCV and since 2001, has participated in activities to promote the development and to educate the public on the benefits of fuel cell vehicles by participating in fleet programs in the USA (CaFCP) and in Japan (JHFC). In 2006, limited leasing of the newly-developed 2005 X-TRAIL FCV was initiated in Japan, in the Kanagawa Prefecture and in Yokohama City. In 2007, Nissan provided an X-TRAIL FCV to Kanagawa Toshi Kotsu Ltd., for use as the world's first-ever fuel cell taxi in use on pubric roads. The 2005 X-TRAIL is equipped with various newly-developed technologies, including a fuel cell stack that was engineered by Nissan in-house.
Journal Article

Development of a Diesel Emission Catalyst System for Meeting US SULEV Standards

2008-04-14
2008-01-0449
In recent years, catalyst systems such as a lean NOx trap (LNT) catalyst system and a urea selective catalytic reduction (SCR) system have been developed to obtain cleaner diesel emissions. At Nissan, we developed an emission control system for meeting Tier 2 Bin 5 requirements in 2003. On the basis of that technology, a new HC-NOx trap catalyst system has now been developed that complies with the SULEV standards without increasing the catalyst volume and precious metal loading. Compliance with the SULEV standards requires a further reduction of HC (NMHC) emissions by 84% and NOx by 60% compared with the emission performance Tier 2 Bin 5 compliant catalyst system. Consequently high conversion performance for both HCs and NOx is needed. An investigation of HC emission behavior under the FTP75 mode showed that a reduction of cold-phase HCs was critical for meeting the standard. Large quantities of HCs above C4 are emitted in the cold state.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

2013-04-08
2013-01-1303
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

Effects of NOx and Unburned Gasoline on Low Temperature Sludge Formation in Engine Oil

1991-02-01
910747
It is generally known that NOx reacts with unburned gasoline, olefins in particular, to form sludge precursors. In this study, the authors investigated the process by which NOx and unburned gasoline mix into the engine oil and analyzed the mechanism whereby stop and go driving accelerates sludge formation. It has been found that NOx detected in the engine oil as nitrite ions mixes into the oil in the crankcase. The NOx concentration in the engine oil increases rapidly when the crankcase gas temperature is nearly equal to the dew point of the water vapor in the crankcase. Unburned gasoline is mainly absorbed into the oil through the oil film on the cylinder walls and the oil in the ring grooves. During low-temperature engine operation in stop-go driving (i.e., when the vehicle is stopped), NOx and unburned gasoline are absorbed into the engine oil and, in high-temperature engine operation (i.e., when the vehicle is moving), NOx and unburned gasoline are released from the oil.
Journal Article

Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine

2015-04-14
2015-01-0902
To improve the fuel economy via high EGR, combustion stability is enhanced through the addition of hydrogen, with its high flame-speed in air-fuel mixture. So, in order to realize on-board hydrogen production we developed a fuel reformer which produces hydrogen rich gas. One of the main issues of the reformer engine is the effects of reformate gas components on combustion performance. To clarify the effect of reformate gas contents on combustion stability, chemical kinetic simulations and single-cylinder engine test, in which hydrogen, CO, methane and simulated gas were added to intake air, were executed. And it is confirmed that hydrogen additive rate is dominant on high EGR combustion. The other issue to realize the fuel reformer was the catalyst deterioration. Catalyst reforming and exposure test were carried out to understand the influence of actual exhaust gas on the catalyst performance.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine

2007-10-29
2007-01-4004
Some automakers have been studying variable compression ratio (VCR) technology as one possible way of improving fuel economy. In previous studies, we have developed a VCR mechanism of a unique multiple-link configuration that achieves a piston stroke characterized by semi-sinusoidal oscillation and lower piston acceleration at top dead center than on conventional mechanisms. By controlling compression ratio with this multiple-link VCR mechanism so that it optimally matches any operating condition, the mechanism has demonstrated that both lower fuel consumption and higher output power are simultaneously possible. However, it has also been observed that fuel consumption does not reduce further once the compression ratio reached a certain level. This study focused on the fact that the piston-stroke characteristic obtained with the multiple-link mechanism is suitable to a longer stroke.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Information Services for Greater Driving Enjoyment

1998-02-23
980614
A prototype navigation system with cellular phone access to an information service center was constructed and evaluated. Center personnel can also operate the system remotely, in addition to providing traffic information and information for more enjoyable travel. Real-time conversation with a center operator is also possible. The system was rated positively by most of the subjects, especially the real-time voice service. This paper describes the car navigation market and cellular phone market in Japan, the system configuration, evaluation results and possible solutions to problems in the system. It also touches on the outlook for future car navigation systems and information services.
X