Refine Your Search

Topic

Search Results

Journal Article

In-Use Emissions from Non-road Equipment for EPA Emissions Inventory Modeling (MOVES)

2010-10-05
2010-01-1952
Because of U.S. EPA regulatory actions and the National Academies National Research Council suggestions for improvements in the U.S. EPA emissions inventory methods, the U.S. EPA' Office of Transportation and Air Quality (OTAQ) has made a concerted effort to develop instrumentation that can measure criteria pollutant emissions during the operation of on-road and off-road vehicles. These instruments are now being used in applications ranging from snowmobiles to on-road passenger cars to trans-Pacific container ships. For the betterment of emissions inventory estimation these on-vehicle instruments have recently been employed to measure time resolved (1 hz) in-use gaseous emissions (CO₂, CO, THC, NO ) and particulate matter mass (with teflon membrane filter) emissions from 29 non-road construction vehicles (model years ranging from 1993 to 2007) over a three year period in various counties in Iowa, Missouri, and Kansas.
Journal Article

Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters

2013-04-08
2013-01-1778
Exhaust emissions of seventeen 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, twelve WHO 2005 chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and nineteen polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine equipped with aftertreatment including a diesel oxidation catalyst (DOC) and wall flow copper or iron urea selective catalytic reduction filter (SCRF) were investigated. These systems differ from a traditional flow through urea selective catalytic reduction (SCR) catalyst because they place copper or iron catalyst sites in close proximity to filter-trapped particulate matter. These conditions could favor de novo synthesis of dioxins and furans. The results were compared to previously published results of modern diesel engines equipped with a DOC, catalyzed diesel particulate filter (CDPF) and flow through urea SCR catalyst.
Journal Article

In-Situ Emissions Performance of EPA2010-Compliant On-Highway Heavy-Duty Diesel Engines

2013-09-24
2013-01-2430
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOX control for diesel engines provided the exhaust aftertreatment inlet temperature remains at 200° C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200° C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190° C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed, which add additional expense. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Maneuver-Based Battery-in-the-Loop Testing - Bringing Reality to Lab

2013-04-08
2013-01-0157
The increasing numbers of hybrid electric and full electric vehicle models currently in the market or in the pipeline of automotive OEMs require creative testing mechanisms to drive down development costs and optimize the efficiency of these vehicles. In this paper, such a testing mechanism that has been successfully implemented at the US Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory (EPA NVFEL) is described. In this testing scheme, the units-under-test consist of a battery pack and its associated battery management system (BMS). The remaining subsystems, components, and environment of the vehicle are virtual and modeled in high fidelity.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Journal Article

HCCI Engine Application on a Hydraulic Hybrid Bus

2012-09-10
2012-01-1631
After initial trials on Homogeneous Charge Compression Ignition (HCCI) engine design and tests pursuing feedback control to avoid misfire and knocking over wide transient operation ranges, Engineers at the US Environmental Protection Agency's (EPA) National Vehicle Fuel and Emissions Laboratory identified the crucial engine state variable, MRPR (Maximum Rate of Pressure Rise) and successfully controlled a 1.9L HCCI engine in pure HCCI mode [1]. This engine was used to power a hybrid Ford F-150 truck which successfully ran FTP75 tests in 2004. In subsequent research, efforts have been focused on practical issues such as improving transient rate, system simplification for controllability and packaging, application of production grade in-cylinder pressure sensors, cold start, idling and calibration for ambient conditions as well as oxidation catalyst applications for better turbine efficiency and HC and CO emissions control.
Journal Article

Representing GHG Reduction Technologies in the Future Fleet with Full Vehicle Simulation

2018-04-03
2018-01-1273
As part of an ongoing assessment of the potential for reducing greenhouse gas (GHG) emissions of light-duty vehicles, the U.S. Environmental Protection Agency (EPA) has implemented an updated methodology for applying the results of full vehicle simulations to the range of vehicles across the entire fleet. The key elements of the updated methodology explored for this article, responsive to stakeholder input on the EPA’s fleet compliance modeling, include (1) greater transparency in the process used to determine technology effectiveness and (2) a more direct incorporation of full vehicle simulation results. This article begins with a summary of the methodology for representing existing technology implementations in the baseline fleet using EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation. To characterize future technologies, a full factorial ALPHA simulation of every conventional technology combination to be considered was conducted.
Technical Paper

An HCCI Engine: Power Plant for a Hybrid Vehicle

2004-03-08
2004-01-0933
Homogenous charge compression ignition (HCCI) engines offer a great potential in achieving high thermal efficiency and extremely low NOx at the same time. However, control of combustion phasing over a wide speed and load range has been a challenge, especially during transient operations. This paper describes work conducted at the National Vehicle and Fuel Emissions Laboratory, which explores the potential use of an HCCI engine as a power plant for a hybrid vehicle. A four-cylinder, 1.9 L commercial diesel engine was modified to operate with port-injected regular grade gasoline in HCCI mode. The combustion phasing is controlled by a combination of boost, EGR and thermal management as a function of engine speed and load. As a stand-alone unit, the engine has demonstrated a wide operation range with efficiency like that of a diesel engine and NOx below 0.2 g/kWh. At room temperature, the engine starts in SI mode and then transitions to HCCI in about 25 seconds.
Technical Paper

Benchmarking and Hardware-in-the-Loop Operation of a 2014 MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine

2016-04-05
2016-01-1007
As part of its technology assessment for the upcoming midterm evaluation (MTE) of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (LD GHG) emissions standards, EPA has been benchmarking engines and transmissions to generate inputs for use in its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) model, a physics-based, forward-looking, full vehicle computer simulation tool. One of the most efficient engines today, a 2.0L Mazda SkyActiv engine, is of particular interest due to its high geometric compression ratio and use of an Atkinson cycle. EPA benchmarked the 2.0L SkyActiv at its National Vehicle and Fuel Emissions laboratory. EPA then incorporated ALPHA into an engine dynamometer control system so that vehicle chassis testing could be simulated with a hardware-in-the-loop (HIL) approach.
Technical Paper

Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model

2016-04-05
2016-01-0910
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles[1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. The software tool is a MATLAB/Simulink based desktop application. In preparation for the midterm evaluation of the light-duty GHG emission standards for model years 2022-2025, EPA is refining and revalidating ALPHA using newly acquired data from model year 2013-2015 engines and vehicles.
Technical Paper

Modeling of a Conventional Mid-Size Car with CVT Using ALPHA and Comparable Powertrain Technologies

2016-04-05
2016-01-1141
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data.
Technical Paper

Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

2017-03-28
2017-01-1016
EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
Technical Paper

Modeling and Validation of 12V Lead-Acid Battery for Stop-Start Technology

2017-03-28
2017-01-1211
As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
Technical Paper

Air Flow Optimization and Calibration in High-Compression-Ratio Naturally Aspirated SI Engines with Cooled-EGR

2016-04-05
2016-01-0565
As part of the U.S. Environmental Protection Agency (U.S. EPA) “Midterm Evaluation of Light-duty Vehicle Standards for Model Years 2022-2025 [1]”, the U.S. EPA is evaluating engines and assessing the effectiveness of future engine technologies for reducing CO2 emissions. Such assessments often require significant development time and resources in order to optimize intake and exhaust cam variable valve timing (VVT), exhaust gas recirculation (EGR) flow rates, and compression ratio (CR) changes. Mazda SkyActiv-G spark-ignition (SI) engines were selected by EPA for an internal engine development program based upon their high geometric compression ratio (14:1 in Europe and Japan, 13:1 in North America) and their use of a flexible valve train configuration with electro-mechanical phasing control on the intake camshaft. A one-dimensional GT-Power engine model was calibrated and validated using detailed engine dynamometer test data [2] from 2.0L and 2.5L versions of the SkyActiv-G engine.
Technical Paper

Transient Control of HCCI Engines Using MRPR or Its Proxies

2012-09-10
2012-01-1580
To make an HCCI engine as a useful commercial product, the engine has to be capable of performing quick transients in a large operating range, especially in vehicle applications. HCCI combustion is kinetically controlled and has to be operated properly between two limits: misfire and knock. To achieve the correct state, the right amount of fuel/air/EGR has to be inducted into the cylinder. The amounts and ratios of the three components are highly dependent on other variables as operating conditions change. It is unrealistic and unreliable to predict the right combination of these variables without principal component analysis. Thus, the optimal response control path has to be based on the quality of the previous combustion event as well as the direction and the rate of transition.
X