Refine Your Search



Search Results

Technical Paper

In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start

The absorption of unburned fuel into the engine cylinder wall oil film has been identified as a source of hydrocarbon (HC) emissions from spark-ignited (SI)engines. While significant work has been done under steady-state operating conditions to quantify the contribution of this mechanism to overall unburned hydrocarbon emissions, little work has focused on cold starting conditions and in situ measurement of the fuel / oil film interaction. The work reported here shows how laser-induced fluorescence (LIF) spectroscopy can be used to make in situ measurements of the absorption of fuel into the cylinder wall oil film of a single cylinder engine. Measurements were made at two points in the engine cycle under cold start conditions. Results indicate that fuel concentration in the oil film reached a maximum of fifty percent (50%) during cold start operation, though fuel was present in the oil film throughout the engine cycle.
Technical Paper

Correlating Laboratory Oil Aerosol Coking Rig Tests to Diesel Engine Tests to Understand the Mechanisms Responsible for Turbocharger Compressor Coking

Deposit formation within turbocharger compressor housings can lead to compressor efficiency degradation. This loss of turbo efficiency may degrade fuel economy and increase CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in deposit formation, five different lubricants were run in a fired engine test while monitoring turbocharger compressor efficiency over time. Base stock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and back plate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

European Lean Gasoline Direct Injection Vehicle Benchmark

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.01 LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study.
Technical Paper

Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends

Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
Technical Paper

Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder.
Technical Paper

Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels

To address the growing need for accurate predictions of combustion phasing and emissions for development of advanced engines, a more accurate definition of model fuels and their associated chemical-kinetics mechanisms are necessary. Wide variations in street fuels require a model-fuel blending methodology to allow simulation of fuel-specific characteristics, such as ignition timing, emissions, and fuel vaporization. We present a surrogate-blending technique that serves as a practical modeling tool for determination of surrogate blends specifically tailored to different real-fuel characteristics, with particular focus on model fuels for gasoline engine simulation. We start from a palette of potential model-fuel components that are based on the characteristic chemical classes present in real fuels. From this palette, components are combined into a surrogate-fuel blend to represent a real fuel with specific fuel properties.
Technical Paper

An Optical Backscatter Sensor for Particulate Matter Measurement

An optical-based sensor for detecting particulate matter (PM) in diesel engine exhaust has been demonstrated. The position of the sensor during the experiments was the exhaust manifold prior to the turbocharger. The sensor is constructed of fiber optics which transmit 532-nm laser light into the exhaust pipe and collect backscattered light in a 180° geometry. Due to the optical nature of the probe, PM sensing can occur at high temporal rates. Experiments conducted by changing the fuel injection properties of one cylinder of a four cylinder engine demonstrated that the sensor can resolve cycle dependent events. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Effect of Air Filter Condition on Diesel Vehicle Fuel Economy

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and overall driveability. This paper addresses the issue of whether air filter replacement improves fuel economy. Described are measured results for increasing air filter pressure drop in turbocharged diesel-engine-powered vehicles, with primary focus on changes in vehicle fuel economy but also including emissions and performance. Older studies of carbureted gasoline vehicles have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and, conversely, that a dirty air filter can be significantly detrimental to fuel economy. In contrast, a recent study showed that the fuel economy of modern gasoline vehicles is virtually unaffected by filter clogging due to the closed loop control and throttled operation of these engines. Because modern diesel engines operate without throttling (or with minimal throttling), a different result could be anticipated.
Technical Paper

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8.
Technical Paper

Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel.
Technical Paper

Experimental Evaluation of a 4-cc Glow-Ignition Single-Cylinder Two-Stroke Engine

The performance of a 4cc two-stroke single cylinder glow plug engine was assessed at wide open throttle for speeds ranging from 2000 to 7000RPM. The engine performance was mapped for the stock aluminum head and one composed of titanium, which was printed using additive manufacturing. The engine was mounted to a motoring dynamometer and the maximum torque was determined by adjusting the fuel flow. Maximum torque occurred around 3000 to 3500RPM and tended to be higher when using the aluminum head. At slower speeds, the titanium head produced slightly higher torque. For each test condition, maximum torque occurred at leaner conditions for the titanium head compared to the stock aluminum one. Higher efficiencies were observed with the aluminum head for speeds greater than 3000RPM, but the titanium heads provided better efficiency at the lower speed points.
Technical Paper

Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.34 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

Heavy Vehicle Propulsion Materials Program

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future.
Technical Paper

Deactivation of Diesel Oxidation Catalysts by Oil-Derived Phosphorus

The poisoning of diesel oxidation catalysts (DOCs) by the engine oil additive zinc dialkyldithiophosphate (ZDDP) is investigated in the present study. A 517cc single-cylinder diesel engine is used to accelerate the phosphorus poisoning of DOCs by artificially increasing the ZDDP consumption to approximately 700 times normal operation by three different methods. These include lube-oil doped fuel, intake manifold, and exhaust manifold injection with lube-oil containing an elevated level of ZDDP. The deactivation of DOCs under these conditions is characterized by a variety of physical and chemical techniques. Surface composition and structure of the poisoned catalysts analyzed with SEM-EDS show differences depending on the method of ZDDP introduction. Exhaust manifold injection produces a zinc phosphate glaze which masks the surface to species diffusion. Fuel and intake manifold injection methods produce chemically absorbed phosphorus on the catalyst washcoat surface.
Technical Paper

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 90. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant Φ conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling the HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50.