Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

2007-10-29
2007-01-4010
The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios (Φ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions.
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Technical Paper

Cetane Number and Engine Speed Effects on Diesel HCCI Performance and Emissions

2005-10-24
2005-01-3723
The effects of cetane number (CN) on homogeneous charge compression ignition (HCCI) performance and emissions were investigated in a single cylinder engine using intake air temperature for control. Blends of the diesel secondary reference fuels for cetane rating were used to obtain a CN range from 19 to 76. Sweeps of intake air temperature at a constant fueling were performed. Low CN fuels needed to be operated at higher intake temperatures than high CN fuels to achieve ignition. As the intake air temperature was reduced for a given fuel, the combustion phasing was retarded, and each fuel passed through a phasing point of maximum indicated mean effective pressure (IMEP). Early combustion phasing was required for the high CN fuels to prevent misfire, whereas the maximum IMEP for the lowest CN fuel occurred at a phasing 10 crank angle degrees (CAD) later.
X