Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

2001-05-14
2001-01-2064
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Emissions From a 5.9 Liter Diesel Engine Fueled With Ethanol Diesel Blends

2001-05-07
2001-01-2018
A certification diesel fuel and blends containing 10 and 15 volume % ethanol were tested in a 5.9-liter Cummins B Series engine. For each fuel blend, an 8-mode AVL test cycle was performed. The resulting emissions were characterized and measured for each individual test mode (prescribed combination of engine speed and load). These individual mode results are used to create a weighted average that is designed to approximate the results of the Heavy-Duty Transient Federal Test Procedure. The addition of ethanol was observed to have no noticeable effect on the emission of NOx but produced small increases in CO and HC. However, the particulate matter was observed to decrease 20% and 30% with the addition of 10% and 15% ethanol, respectively.
Technical Paper

Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst in Lean Gasoline Engine Exhaust

2015-04-14
2015-01-1008
Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
Technical Paper

Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-Gasoline Blends

2012-04-16
2012-01-0437
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port-fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Assessment of Corrosivity Associated With Exhaust Gas Recirculation in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0657
A high-resolution corrosion probe was placed within the airhorn section of the exhaust gas recirculation (EGR) loop of a heavy-duty diesel engine. The corrosion rate of the mild-steel probe elements was evaluated as a function of fuel sulfur level, EGR fraction, dewpoint margin, and humidity. No significant corrosion was observed while running the engine using a No. 2 grade, < 15ppm sulfur diesel fuel; however, high corrosion rates were observed with No. 2 diesel fuel (∼350 ppm sulfur) while condensing water in the EGR loop. The rate of corrosion on the mild steel elements increased with increasing levels of sulfate in the condensate. However, the engine conditions influencing the sulfate level were not clearly identified in this study.
Technical Paper

Hydrocarbon Selective Catalytic Reduction Using a Silver-Alumina Catalyst with Light Alcohols and Other Reductants

2005-04-11
2005-01-1082
Previously reported work with a full-scale ethanol-SCR system featuring a Ag-Al2O3 catalyst demonstrated that this particular system has potential to reduce NOx emissions 80-90% for engine operating conditions that allow catalyst temperatures above 340°C. A concept explored was utilization of a fuel-borne reductant, in this case ethanol “stripped” from an ethanol-diesel micro-emulsion fuel. Increased tailpipe-out emissions of hydrocarbons, acetaldehyde and ammonia were measured, but very little N2O was detected. In the current increment of work, a number of light alcohols and other hydrocarbons were used in experiments to map their performance with the same Ag-Al2O3 catalyst. These exploratory tests are aimed at identification of compounds or organic functional groups that could be candidates for fuel-borne reductants in a compression ignition fuel, or could be produced by some workable method of fuel reforming.
Technical Paper

Particulate Matter and Aldehyde Emissions from Idling Heavy-Duty Diesel Trucks

2003-03-03
2003-01-0289
As part of a multi-agency study concerning emissions and fuel consumption from heavy-duty diesel truck idling, Oak Ridge National Laboratory personnel measured CO, HC, NOx, CO2, O2, particulate matter (PM), aldehyde and ketone emissions from truck idle exhaust. Two methods of quantifying PM were employed: conventional filters and a Tapered Element Oscillating Microbalance (TEOM). A partial flow micro-dilution tunnel was used to dilute the sampled exhaust to make the PM and aldehyde measurements. The work was performed at the U.S. Army's Aberdeen Test Center's (ATC) climate controlled chamber. ATC performed 37 tests on five class-8 trucks (model years ranging from 1992 to 2001). One was equipped with an 11 hp diesel auxiliary power unit (APU), and another with a diesel direct-fired heater (DFH). The APU powers electrical accessories, heating, and air conditioning, whereas a DFH heats the cab in cold weather. Both devices offer an alternative to extended truck-engine idling.
X