Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

Low temperature combustion (LTC) engine technologies offer opportunities for higher efficiency and lower NOx emissions. Light-end distillate fuels have been shown to help promote LTC and produce very low soot emissions compared to ULSD fuel. In a previous study, a commercial 15L heavy-duty diesel engine was shown to produce lower PM emissions when using a light-end distillate fuel as a substitution for ULSD. In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and the split injection strategy was developed to promote the partially premixed compression ignition (PPCI) combustion. Various gasoline-like light-end distillate fuels were compared with ULSD fuel for performance and emissions. The PM was characterized with particle mass, size, and number measurements, organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis.
Journal Article

Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.