Refine Your Search

Topic

Search Results

Journal Article

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

2014-04-01
2014-01-1562
We present simulated fuel economy and emissions of city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but tailpipe (post-aftertreatment) emissions are affected by complex interactions between engine load and the transient catalyst temperatures, and the emissions results were found to depend significantly on motor size and details of each drive cycle.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

Development of Integrated Modular Motor Drive for Traction Applications

2011-04-12
2011-01-0344
This paper introduces a promising approach for developing an integrated traction motor drive based on the Integrated Modular Motor Drive (IMMD) concept. The IMMD concept strives to meet aggressive power density and performance targets by modularizing both the machine and power electronics and then integrating them into a single combined machine-plus-drive structure. Physical integration of the power electronics inside the machine makes it highly desirable to increase the power electronics operating temperature including higher power semiconductor junction temperatures and improved device packaging. Recent progress towards implementing the IMMD concept in an integrated traction motor drive is summarized in this paper. Several candidate permanent magnet (PM) machine configurations with different numbers of phases between 3 and 6 are analyzed to compare their performance characteristics and key application features.
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
Technical Paper

Variability Analysis of FMVSS-121 Air Brake Systems: 60-mi/hr Service Brake System Performance Data for Truck Tractors

2020-10-05
2020-01-1640
In support of the Federal Motor Carrier Safety Administration’s (FMCSA’s) ongoing interest in connected and automated commercial vehicles, this report summarizes analyses conducted to quantify variability in stopping distance tests conducted on commercial truck tractors. The data used were retrieved from tests performed under the controlled conditions specified for FMVSS-121 air brake system compliance testing. The report explores factors affecting the variability of the service brake stopping distance as defined by 49 CFR 571.121, S5.3.1 Stopping Distance—trucks and buses stopping distance. Variables examined in this analysis include brake type, weight, wheelbase, and tractor antilock braking system (ABS). This analysis uses existing test data collected between 2010 and 2019. Several of the examined parameters affected both tractor stopping distance and stopping distance variability.
Journal Article

Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

2014-04-01
2014-01-1614
To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. In addition, two minivans were subjected to coastdowns to examine the similarity in derived coefficients for two duplicate vehicles of the same model. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Order Separation Using Multiple Tachometers and the TVDFT Order Tracking Method

2005-05-16
2005-01-2265
An automobile and a tracked military vehicle were instrumented with multiple tachometers, one for each drive wheel/sprocket and operated with accelerometers mounted at suspension, chassis, and powertrain locations on the vehicles. The Time Variant Discrete Fourier Transform, TVDFT, order tracking method was then used to extract the order tracks and operating shapes estimated based on each tachometer. It is shown that under some conditions a different operating shape is excited by each of the wheels/sprockets simultaneously. This is due to the asymmetries present in the vehicles. The strengths of the TVDFT order tracking method are shown for this type of analysis, which is difficult due to the closeness, within 0.001 orders, and crossing of the orders. Benefits of using multiple tachometers and advanced order tracking methods become apparent for solving a class of noise and vibration problems.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

Post-Processing Analysis of Large Channel Count Order Track Tests and Estimation of Linearly Independent Operating Shapes

1999-05-17
1999-01-1827
Large channel count data acquisition systems have seen increasing use in the acquisition and analysis of rotating machinery, these systems have the ability to generate very large amounts of data for analysis. The most common operating measurement made on powertrains or automobiles on the road or on dynamometers has become the order track measurement. Order tracking analysis can generate a very large amount of information that must be analyzed, both due to the number of channels and orders tracked. Analysis methods to efficiently analyze large numbers of Frequency Response Function (FRF) measurements have been developed and used over the last 20 years in many troubleshooting applications. This paper develops applications for several FRF based analysis methods as applied for efficient analysis of large amounts of order track data.
Technical Paper

Measurement of Dynamic Properties of Automotive Shock Absorbers for NVH

1999-05-17
1999-01-1840
This paper describes a project on the dynamic characterization of automotive shock absorbers. The objective was to develop a new testing and analysis methodology for obtaining equivalent linear stiffness and damping of the shock absorbers for use in CAE-NVH low- to- mid frequency chassis models. Previous studies using an elastomer test machine proved unsuitable for testing shocks in the mid-to-high frequency range where the typical road input displacements fall within the noise floor of the elastomer machine. Hence, in this project, an electrodynamic shaker was used for exciting the shock absorbers under displacements less than 0.05 mm up to 500 Hz. Furthermore, instead of the swept sine technique, actual road data were used to excite the shocks. Equivalent linear spring-damper models were developed based on least-squares curve-fitting of the test data.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Testing of Electric Power Steering Controllers

2016-04-05
2016-01-0029
The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
Technical Paper

Control-Oriented Modeling of a Vehicle Drivetrain for Shuffle and Clunk Mitigation

2019-04-02
2019-01-0345
Flexibility and backlash of vehicle drivelines typically cause unwanted oscillations and noise, known as shuffle and clunk, during tip-in and tip-out events. Computationally efficient and accurate driveline models are necessary for the design and evaluation of torque shaping strategies to mitigate this shuffle and clunk. To accomplish these goals, this paper develops a full-order physics-based model and uses this model to develop a reduced-order model (ROM), which captures the main dynamics that influence the shuffle and clunk phenomena. The full-order model (FOM) comprises several components, including the engine as a torque generator, backlash elements as discontinuities, and propeller and axle shafts as compliant elements. This model is experimentally validated using the data collected from a Ford vehicle. The validation results indicate less than 1% error between the model and measured shuffle oscillation frequencies.
Journal Article

Deep Learning-Based Queue-Aware Eco-Approach and Departure System for Plug-In Hybrid Electric Buses at Signalized Intersections: A Simulation Study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where information such as signal phase and timing (SPaT) and geometric intersection description is well utilized to guide vehicles passing through intersections in the most energy-efficient manner. Previous studies formulated the optimal trajectory planning problem as finding the shortest path on a graphical model. While this method is effective in terms of energy saving, its computation efficiency can be further enhanced by adopting machine learning techniques. In this paper, we propose an innovative deep learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a plug-in hybrid electric bus (PHEB), which is able to provide an online optimal trajectory for the vehicle considering both the downstream traffic condition (i.e. traffic lights, queues) and the vehicle powertrain efficiency.
Journal Article

Fuel Consumption Sensitivity of Conventional and Hybrid Electric Light-Duty Gasoline Vehicles to Driving Style

2017-08-11
2017-01-9379
Aggressive driving is an important topic for many reasons, one of which is higher energy used per unit distance traveled, potentially accompanied by an elevated production of greenhouse gases and other pollutants. Examining a large data set of self-reported fuel economy (FE) values revealed that the dispersion of FE values is quite large and is larger for hybrid electric vehicles (HEVs) than for conventional gasoline vehicles. This occurred despite the fact that the city and highway FE ratings for HEVs are generally much closer in value than for conventional gasoline vehicles. A study was undertaken to better understand this and better quantify the effects of aggressive driving, including reviewing past aggressive driving studies, developing and exercising a new vehicle energy model, and conducting a related experimental investigation.
X