Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Relative Contributions of Intake and Exhaust Tuning on SI Engine Breathing - A Computational Study

2007-04-16
2007-01-0492
This study examines the contributions and interactions of intake and exhaust tuning on a 4-stroke single-cylinder engine for various engine speeds and valve timings. The parametric study was performed using a 1-D engine simulation model, the combustion sub-model of which was calibrated based on experimental pressure data. Mechanisms by which tuning changes the volumetric efficiency of an engine were studied. Simulation results are compared with established empirical correlations which predict pipe lengths for maximum volumetric efficiency. It was found that intake tuning has a more dominant role in the breathing capability of the engine compared to exhaust tuning and that both are independent from each other. Valve timing was found to have no effect on intake tuning characteristics but to affect exhaust tuning.
Technical Paper

Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions

2008-04-14
2008-01-1088
In this paper, we develop a methodology to enable the isolation of the heat release contribution of knocking combustion from flame-propagation combustion. We first address the empirical modeling of individual non-autoigniting combustion history using the Wiebe function, and subsequently apply this methodology to investigate the effect of autoignition on the heat release history of knocking cycles in a spark ignition (SI) engine. We start by re-visiting the Wiebe function, which is widely used to model empirically mass burned histories in SI engines. We propose a method to tune the parameters of the Wiebe function on a cycle-by-cycle basis, i.e., generating a different Wiebe to suitably fit the heat release history of each cycle. Using non-autoigniting cycles, we show that the Wiebe function can reliably simulate the heat release history of an entire cycle, if only data from the first portion of the cycle is used in the tuning process.
X