Refine Your Search

Search Results

Journal Article

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

2014-04-01
2014-01-0824
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference.
Technical Paper

Effect of Pre-Strain on Edge Cracking Limit for Advanced High-Strength Steel Using Digital Image Correlation

2017-03-28
2017-01-0394
Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
Technical Paper

Aluminum Sheet Springback (Side-Wall-Curl) Study

2017-03-28
2017-01-0396
Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
Technical Paper

Measurement of Strain Distribution for Hole Expansion with Digital Image Correlation (DIC) System

2011-04-12
2011-01-0993
Advanced high strength steels (AHSS) are increasingly used in automotive industry. A major issue for AHSS stamping is edge cracking. This failure mode is difficult to predict by conventional forming limit curve (FLC). The material edge stretchability is mainly evaluated using the hole expansion test. In this study, digital Image Correlation (DIC) is applied for strain measurement. DIC is a non-contact, full field, high accuracy and direct measurement technique that provides more detailed information for the evolution of strains on the sheet surface. Tests were conducted for five AHSS and nine cases. This paper will explain in detail the DIC technique and its results.
Technical Paper

Forming Limit Measurement Using a Multi-Sensor Digital Image Correlation System

2013-04-08
2013-01-1423
A multi-sensor Digital Image Correlation (DIC) system is employed to measure the deformation of metal specimens during tensile tests. The multi-sensor DIC system is capable of providing high quality contour and deformation data of a 3D object. Methodology and advantages of the multi-sensor DIC system is introduced. Tests have been done on steel and aluminum specimens to prove the performance of the system. With the help of the multi-sensor DIC system, we proposed our approaches to determine the forming limit based on shape change around the necking area instead of calculate the FLD based on the in-plane strains. With the employed system, all measurements are done post-deformation, no testing controlling mechanism, such as load force control or touching control, is required. The extracted data is analyzed and the result shows a possibility that we may be able to improve current technique for Forming Limit Diagram (FLD) measurement.
Technical Paper

Improving Material Property Measurement by Using Multi-Camera Digital Image Correlation

2013-04-08
2013-01-1428
In this work, a multi-camera Digital Image Correlation (DIC) system is applied to measure the material properties of aluminum (5754) specimens. Such tests are usually done using 2D (one-camera) or 3D (two-camera) DIC systems. A multi-camera DIC system includes three or more cameras and inherits all the advantages of a conventional 3D DIC system (with two cameras) such as, full-field measurement, high accuracy and high speed. In addition, this system further improves the measured results by including redundant data. In this work, we will show the potential of this system to measure a variety of material properties at one time.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Measurement of Thermal Residual Strain Induced During the Hardening of a Sheet Metal and Reinforced Composite by Digital Shearography

2005-04-11
2005-01-0895
Shearography is an interferometric, non-contact and full field method for direct measurement of first derivatives of deformation (strain). It is relatively insensitive to environmental disturbances and has been proven to be a practical measuring tool for nondestructive testing and evaluation (NDT/NDE). In this paper it has been employed to study the thermal residual strains produced during the reinforcement of a composite to a sheet metal. The reinforced composite is used as an additive to provide extra strength to the sheet metal. The reinforcement process involves gradual heating of the glued composite to a temperature of around 175°C - 180°C and then allowing it cool down to room temperature. During the heating process both the composite and the sheet metal are strained, but during the cooling process some amount of strain is left behind in the sheet metal and it has a key role to play when the product is used for critical parts in automobile and aircraft industries.
Technical Paper

Non-Destructive Evaluation of Spot Weld Using Digital Shearography

2005-04-11
2005-01-0491
Spot Welding is now widely used in the fabrication of sheet metals, mainly due to the cost and time considerations. Spot welds are found in nearly all products where sheet metal is joined. Examples range from a single metal toolbox to nearly 10,000 spot welds found in a typical passenger car. Obviously the quality of the spot weld has a direct impact on the quality of the product. The problem of estimating the spot-weld quality is an important component in quality control. If the weld nuggets are improperly or incompletely formed, or the area surrounding the nugget is smaller than required, the structural integrity of the entire part may be uncertain. Furthermore these inconsistencies are usually internal and are seldom visible to Optical Inspection. This study is focused on the non-destructive evaluation of the spot welds using “Digital Shearography”.
Technical Paper

Friction Coefficient Evaluation on Aluminum Alloy Sheet Metal Using Digital Image Correlation

2018-04-03
2018-01-1223
The coefficient of friction between surfaces is an important criterion for predicting metal behavior during sheet metal stamping processes. This research introduces an innovative technique to find the coefficient of friction on a lubricated aluminum sheet metal surface by simulating the industrial manufacturing stamping process while using 3D digital image correlation (3D-DIC) to track the deformation. During testing, a 5000 series aluminum specimen is placed inside a Stretch-Bend-Draw Simulator (SBDS), which operates with a tensile machine to create a stretch and bend effect. The friction coefficient at the contact point between an alloy sheet metal and a punch tool is calculated using an empirical equation previously developed. In order to solve for the unknown friction coefficient, the load force and the drawback force are both required. The tensile machine software only provides the load force applied on the specimen by the load cell.
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Experimental Study of Springback (Side-Wall-Curl) of Sheet Metal based on the DBS System

2019-04-02
2019-01-1088
Springback is a common phenomenon in automotive manufacturing processes, caused by the elastic recovery of the internal stresses during unloading. A thorough understanding of springback is essential for the design of tools used in sheet metal forming operations. A DBS (Draw-bead Simulator) has been used to simulate the forming process for two different sheet metals: aluminum and steel. Two levels of pulling force and two die radii have been enforced to the experimental process to get different springback. Also, the Digital Image Correlation (DIC) system has been adopted to capture the sheet contour and measure the amount of side-wall-curl (sheet springback) after deformation. This paper presents the influence of the material properties, force, and die radius on the deformation and springback after forming. A thorough understanding of this phenomenon is essential, seeing that any curvature in the part wall can affect quality and sustainability.
Technical Paper

Experimental Drawbeads Design Research

2019-04-02
2019-01-1087
In order to constrain the restraining force and control the speed of metal flow, drawbeads are widely used in industry. They prevent wrinkling or necking in formed panels, reduce the binder force, and minimize the usage of sheet metal to make a part. Different drawbead configurations can satisfy various stamping production. Besides local design of drawbeads, other factors like pulling directions, binder angles and single or multiple beads play an important role too. Moreover, it was found that the same beads configuration can own a different rate of change of pulling force on different gaps by experience. In this paper, to study the effect of each factor, the Aluminum and Steel sheet metals were tested to obtain the pulling force as they passed through a draw bead. Three gap cases between a male and a female beads are set to figure out the trend of pulling force.
Technical Paper

A New Measurement of Aluminum Alloy Edge Stretching Limit Based on Digital Image Correlation Method

2016-04-05
2016-01-0417
In Aluminum Alloy, AA, sheet metal forming, the through thickness cracking at the edge of cut out is one of the major fracture modes. In order to prevent the edge cracking in production forming process, practical edge stretch limit criteria are needed for virtual forming prediction and early stamping trial evaluations. This paper proposes new methods for determining the edge stretching limit of the sheet coupons, with and without pre-stretching, based on the Digital Image Correlation (DIC) technique. A numbers of sets of notch-shaped smaller coupons with three different pre-stretching conditions (near 5%, 10% and fractured) are cut from the prestretched large specimens. Then the notch-shaped smaller coupons are stretched by uniaxial tension up to through edge cracking observed. A dual-camera 3D-DIC system is utilized to measure both coupon face strain and thickness strain in the notch area at the same time.
Technical Paper

The Influence of Edge Quality on Edge Stretching Limit for Aluminum Alloy

2016-04-05
2016-01-0416
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Measure of Forming Limit Strain on the Aluminum Sheets Passed Through Draw-Bead by Digital Image Correlation

2015-04-14
2015-01-0598
Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
Technical Paper

Design Approach for Online Measuring the Distance of the Gap between the Contactors of Electric Relay Switch

2014-04-01
2014-01-0831
The assembling accuracy of two contactors during the relay switch production is an important factor affecting the quality of relay. An embedded machine vision quality Inspection system has been developed for electric relay production line inspection. The proposed system can provide online feedback on the quality of the relays by measuring the distance of the gap between the contacts of them. Two CMOS imaging sensors are operated for image acquisition and the parallel working mode is realized under dual-channel mode. A red light illumination system has been adopted to eliminate the imaging noise from the reflection of the surfaces of copper sheet. Before the test, the features areas in the image of same type relay is selected as template and saved in the computer. During the inspection procedure, a rotation invariance detection scheme based on circular projection matching algorithm has been used for fast recognizing and locating detected object with the help of these feature areas.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Technical Paper

Bendability Study of 7xxx Aluminum Alloy Based on the DIC Technique

2019-04-02
2019-01-1265
Bendability is a critical characteristic of sheet metal during the stamping process in automobile industry. Bending operation plays an important role in the panels forming of vehicles. In this study, the recently developed “Incremental Bending” method was utilized to evaluate the ambient bendability of 7xxx series avoiding bending crack. A 3D digital image correlation (DIC) measurement system is improved to capture the displacement and strain information on the stretched side of the sheet samples. The background, experimental method and data post-procedure are introduced in detail. After several sequential images acquisition and data processing, the major strain histories on the stretch zone of the samples are measured. With different bending process and parameters, the location of peak strain and the surface major strain distribution were evaluated as a function of R/T ratio (the inner radius over sheet thickness).
X