Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement and Evaluation of Vacuum Suction Cups Using Digital Image Correlation

2020-04-14
2020-01-0542
As vacuum suction cups are widely used in stamping plants, it becomes urgent and important to understand their performance and failure mode. Vacuum suction cups are employed to lift, move, and place sheet metal instead of human hands. Occasionally the vacuum cups would fail and drop parts, even it would cause expensive delays in the production line. In this research, several types of vacuum cups have been studies and compared experimentally. A new tensile device and test method was developed to measure the pulling force and deformation of vacuum cups. The digital image correlation technique has been adopted to capture and analyze the contour, deformation and strain of the cups under different working conditions. The experimental results revealed that the relevant influential parameters include cup type, pulling force angles, vacuum levels, sheet metal curvatures, etc.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Journal Article

Reliability Estimation for Multiple Failure Region Problems using Importance Sampling and Approximate Metamodels

2008-04-14
2008-01-0217
An efficient reliability estimation method is presented for engineering systems with multiple failure regions and potentially multiple most probable points. The method can handle implicit, nonlinear limit-state functions, with correlated or non-correlated random variables, which can be described by any probabilistic distribution. It uses a combination of approximate or “accurate-on-demand,” global and local metamodels which serve as indicators to determine the failure and safe regions. Samples close to limit states define transition regions between safe and failure domains. A clustering technique identifies all transition regions which can be in general disjoint, and local metamodels of the actual limit states are generated for each transition region.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Journal Article

Comparison of Tribological Performance of WS2 Nanoparticles, Microparticles and Mixtures Thereof

2014-04-01
2014-01-0949
Tribological performance of tungsten sulfide (WS2) nanoparticles, microparticles and mixtures of the two were investigated. Previous research showed that friction and wear reduction can be achieved with nanoparticles. Often these improvements were mutually exclusive, or achieved under special conditions (high temperature, high vacuum) or with hard-to-synthesize inorganic-fullerene WS2 nanoparticles. This study aimed at investigating the friction and wear reduction of WS2 of nanoparticles and microparticles that can be synthesized in bulk and/or purchased off the shelf. Mixtures of WS2 nanoparticles and microparticles were also tested to see if a combination of reduced friction and wear would be achieved. The effect of the mixing process on the morphology of the particles was also reported. The microparticles showed the largest reduction in coefficient of friction while the nanoparticles showed the largest wear scar area reduction.
Technical Paper

Driver Visual Focus of Attention Estimation in Autonomous Vehicles

2020-04-14
2020-01-1037
An existing challenge in current state-of-the-art autonomous vehicles is the process of safely transferring control from autonomous driving mode to manual mode because the driver may be distracted with secondary tasks. Such distractions may impair a driver’s situational awareness of the driving environment which will lead to fatal outcomes during a handover. Current state-of-the-art vehicles notify a user of an imminent handover via auditory, visual, and physical alerts but are unable to improve a driver’s situational awareness before a handover is executed. The overall goal of our research team is to address the challenge of providing a driver with relevant information to regain situational awareness of the driving task. In this paper, we introduce a novel approach to estimating a driver’s visual focus of attention using a 2D RGB camera as input to a Multi-Input Convolutional Neural Network with shared weights. The system was validated in a realistic driving scenario.
Technical Paper

Experimental and Analytical Study of Drawbead Restraining Force for Sheet Metal Drawing Operations

2020-04-14
2020-01-0753
Design of sheet metal drawing processes requires accurate information about the distribution of restraining forces, which is usually accomplished by a set of drawbeads positioned along the perimeter of the die cavity. This study is targeting bringing together the results of finite element analysis and experimental data in order to understand the most critical factors influencing the restraining force. The experimental study of the restraining force was performed using drawbead simulator tool installed into a tensile testing machine. Based upon the experimental results, it was observed that the restraining force of the given drawbead configuration is dependent upon the depth of bead penetration, friction between the drawbead surfaces as well as the clearance between the flanges of the drawbead simulator. This clearance is often adjusted during stamping operations to increase or decrease material inflow into the die cavity without any modification in the die.
Technical Paper

Numerical Investigation of Transient Flow Effects on the Separation Parameters of a Reverse Flow Type Cyclone Particle Separator

2008-04-14
2008-01-0419
This study is concerned with computational fluid dynamics (CFD) simulations of flow in an automotive reverse flow type cyclone particle separator using the Reynolds Stress Model (RSM) turbulence model. Steady simulations were found to never fully converge, with pressure, velocity and vorticity results exhibiting small oscillations as the solution was iterated further. Transient simulations showed the presence of a main vortex precession that resulted in periodic fluctuations of the flow parameters. Fourier analysis was used to characterize this semi-periodic flow feature and to assess its effect on the two main performance measures of the cyclone: overall pressure drop and particle separation efficiency.
Technical Paper

Numerical Investigation of the Sensitivity of the Performance Criteria of an Automotive Cyclone Particle Separator to CFD Modeling Parameters

2009-04-20
2009-01-1176
Predicting the optimum performance parameters of an automotive cyclone particle separator (separation efficiency and pressure drop) using computational fluid dynamics by varying its geometrical parameters is challenging and a time consuming process due to the highly swirling nature of the flow. This study presents results of three investigations of the performance and design of a cyclone separator: a sensitivity analysis, deterministic optimization and a reliability based design optimization. All three cases involved variation of four geometric parameters that characterize the design of the cyclone.
Technical Paper

Reliability Analysis Using Monte Carlo Simulation and Response Surface Methods

2004-03-08
2004-01-0431
An accurate and efficient Monte Carlo simulation (MCS) method is developed in this paper for limit state-based reliability analysis, especially at system levels, by using a response surface approximation of the failure indicator function. The Moving Least Squares (MLS) method is used to construct the response surface of the indicator function, along with an Optimum Symmetric Latin Hypercube (OSLH) as the sampling technique. Similar to MCS, the proposed method can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. However, the efficiency of MCS can be greatly improved. The method appears to be particularly efficient for multiple limit state and multiple design point problem. A mathematical example and a practical example are used to highlight the superior accuracy and efficiency of the proposed method over traditional reliability methods.
Technical Paper

Correction Study of the Straightening Theory for Shafts

2002-03-04
2002-01-0129
Through the study of the straightening theory, the major causes of the errors affecting straightening accuracy have been analyzed. An error-perturbation curve has been generated from the difference between experiments and the single point straightening theory. By the study of this disturb error curve, a correction value can be obtained. Using this value to compensate the press stroke, the precise straightening result can be achieved.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

2017-03-28
2017-01-0307
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

Towards Video Sharing in Vehicle-to-Vehicle and Vehicle-to-Infrastructure for Road Safety

2017-03-28
2017-01-0076
Current implementations of vision-based Advanced Driver Assistance Systems (ADAS) are largely dependent on real-time vehicle camera data along with other sensory data available on-board such as radar, ultrasonic, and GPS data. This data, when accurately reported and processed, helps the vehicle avoid collisions using established ADAS applications such as Forward Collision Avoidance (FCA), Autonomous Cruise Control (ACC), Pedestrian Detection, etc. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) over Dedicated Short Range Communication (DSRC) provides basic sensory data from other vehicles or roadside infrastructure including position information of surrounding traffic. Exchanging rich data such as vision data between multiple vehicles, and between vehicles and infrastructure provides a unique opportunity to advance driver assistance applications and Intelligent Transportation Systems (ITS).
Technical Paper

Aluminum Sheet Springback (Side-Wall-Curl) Study

2017-03-28
2017-01-0396
Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
Technical Paper

A 1-D Platform to Simulate the Effects of Dedicated EGR on SI Engine Combustion

2017-03-28
2017-01-0524
The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
Technical Paper

Sheared Edge Stretchability of Steels Suitable for Automotive Applications

2017-03-28
2017-01-1708
In recent years, dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) are considered as prominent materials in the automotive industry due to superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Another major issue in the trimming of UHSS is tool wear because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic phase in the microstructure. The objective of the current paper is to study the influence of trimming conditions and tool wear on quality and stretchability of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel and compared with other steels such as HSLA 350 and BH210.
X