Refine Your Search

Topic

Author

Search Results

Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Journal Article

Modeling, Analysis and Optimization of the Twist Beam Suspension System

2015-04-14
2015-01-0623
A twist beam rear suspension system is modeled, analyzed and optimized in this paper. An ADAMS model is established based on the REC (Rigid-Elastic Coupling) Theory, which is verified by FEM (Finite Element Method) approach, the effects of the geometric parameters on the twist beam suspension performance are investigated. In order to increase the calculation efficiency and improve the simulation accuracy, a neural network model and NSGA II (Non-dominated Sorting Genetic Algorithm II) are adopted to conduct a multi-objective optimization on a twist beam rear suspension system.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Computational Efficiency Improvements in Topography Optimization Using Reanalysis

2016-04-05
2016-01-1395
To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Journal Article

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach

2008-04-14
2008-01-0377
Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design with non-probabilistic uncertainties. In practical engineering applications, information regarding the uncertain variables and parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient information may exist simultaneously. Most of the existing optimal design methods under uncertainty can not handle this form of incomplete information. They have to either discard some valuable information or postulate the existence of additional information.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Journal Article

Tribological Performance of ZnO-Oil Nanofluids at Elevated Temperatures

2013-04-08
2013-01-1219
The tribological performance of nanofluids consisting of ZnO nanoparticles dispersed with a stabilizer in an API Group III oil was investigated. Recent research suggests that these fluids may reduce friction and wear compared to the base oil when used as a lubricant in metal-on-metal tests. The effects of nanoparticle concentration and test temperature on friction and wear were studied. Tests were run at 50°C and 100°C to investigate the viability of the fluids at elevated temperatures because possible applications include use as engine lubricants. Nanofluids showed friction reduction of up to 5.2% and reduced wear by up to 82.8% versus oil with only stabilizer at the highest ZnO concentration and the lowest temperature. Stabilizer increased wear at every concentration, but did not affect friction significantly. Fluid viscosity was also investigated. At 30°C, significant shear-thinning behavior was observed for the 2% ZnO solution, and a viscosity versus shear rate curve was found.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Optimal Engine Torque Management for Reducing Driveline Clunk Using Time - Dependent Metamodels

2007-05-15
2007-01-2236
Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be therefore, minimized. This is usually achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. However, the engine torque rise, and its rate can negatively affect the vehicle throttle response. Therefore, the engine torque management must be balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This paper describes a methodology for calibrating the engine torque in order to minimize the clunk disturbance, while still meeting throttle response constraints. A set of predetermined engine torque profiles are calibrated in a vehicle and the transmission turbine speed is measured for each profile. The latter is used to quantify the clunk disturbance.
Technical Paper

An Efficient Re-Analysis Methodology for Vibration of Large-Scale Structures

2007-05-15
2007-01-2326
Finite element analysis is a well-established methodology in structural dynamics. However, optimization and/or probabilistic studies can be prohibitively expensive because they require repeated FE analyses of large models. Various reanalysis methods have been proposed in order to calculate efficiently the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. The parametric reduced-order modeling (PROM) and the combined approximation (CA) methods are two re-analysis methods, which can handle large model parameter changes in a relatively efficient manner. Although both methods are promising by themselves, they can not handle large FE models with large numbers of DOF (e.g. 100,000) with a large number of design parameters (e.g. 50), which are common in practice. In this paper, the advantages and disadvantages of the PROM and CA methods are first discussed in detail.
Technical Paper

Optimal Idle Speed Control of an Automotive Engine

1998-02-23
981059
An optimal idle speed control (ISC) system for an automotive engine is introduced in this paper. The system is based on a non-linear model including time delay. This model is linearized at the nominal operating point. The effect of the time delay on control is compensated by prediction. This methodology is applied to a Chrysler 2.0 liter 4-cylinder SOHC (Single Overhead Cam) engine. All of the unknown parameters of the model are identified by using the normal operating data from the test engine. Based on these identified parameters, an optimal controller was designed and implemented using a rapid prototyping system. Numerous experiments of the optimal controller were carried out at the Chrysler Technology Center in Auburn Hills, Michigan. The performance was compared to that of the existing controller. The results showed that the optimal controller has the capability to effectively control the engine idle speed under a variety of accessory loads and disturbances.
Technical Paper

A Time-Dependent Reliability Analysis Method using a Niching Genetic Algorithm

2007-04-16
2007-01-0548
A reliability analysis method is presented for time-dependent systems under uncertainty. A level-crossing problem is considered where the system fails if its maximum response exceeds a specified threshold. The proposed method uses a double-loop optimization algorithm. The inner loop calculates the maximum response in time for a given set of random variables, and transforms a time-dependent problem into a time-independent one. A time integration method is used to calculate the response at discrete times. For each sample function of the response random process, the maximum response is found using a global-local search method consisting of a genetic algorithm (GA), and a gradient-based optimizer. This dynamic response usually exhibits multiple peaks and crosses the allowable response level to form a set of complex limit states, which lead to multiple most probable points (MPPs).
X