Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Efficient Re-Analysis Methodology for Vibration of Large-Scale Structures

2007-05-15
2007-01-2326
Finite element analysis is a well-established methodology in structural dynamics. However, optimization and/or probabilistic studies can be prohibitively expensive because they require repeated FE analyses of large models. Various reanalysis methods have been proposed in order to calculate efficiently the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. The parametric reduced-order modeling (PROM) and the combined approximation (CA) methods are two re-analysis methods, which can handle large model parameter changes in a relatively efficient manner. Although both methods are promising by themselves, they can not handle large FE models with large numbers of DOF (e.g. 100,000) with a large number of design parameters (e.g. 50), which are common in practice. In this paper, the advantages and disadvantages of the PROM and CA methods are first discussed in detail.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Technical Paper

Reliability Estimation of Large-Scale Dynamic Systems by using Re-analysis and Tail Modeling

2009-04-20
2009-01-0200
Probabilistic studies can be prohibitively expensive because they require repeated finite element analyses of large models. Re-analysis methods have been proposed with the premise to estimate accurately the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. Although these methods increase computational efficiency, they are still not efficient enough for probabilistic analysis of large-scale dynamic systems with low failure probabilities (less or equal to 10-3). This paper presents a methodology that uses deterministic and probabilistic re-analysis methods to generate sample points of the response. Subsequently, tail modeling is used to estimate the right tail of the response PDF and the probability of failure a highly reliable system. The methodology is demonstrated on probabilistic vibration analysis of a realistic vehicle FE model.
Technical Paper

System Reliability-Based Design using a Single-Loop Method

2007-04-16
2007-01-0555
An efficient approach for series system reliability-based design optimization (RBDO) is presented. The key idea is to apportion optimally the system reliability among the failure modes by considering the target values of the failure probabilities of the modes as design variables. Critical failure modes that contribute the most to the overall system reliability are identified. This paper proposes a computationally efficient, system RBDO approach using a single-loop method where the searches for the optimum design and for the most probable failure points proceed simultaneously. Specifically, at each iteration the optimizer uses approximated most probable failure points from the previous iteration to search for the optimum. A second-order Ditlevsen upper bound is used for the joint failure probability of failure modes. Also, an easy to implement active strategy set is employed to improve algorithmic stability.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
X