Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Investigation of Transient Flow Effects on the Separation Parameters of a Reverse Flow Type Cyclone Particle Separator

This study is concerned with computational fluid dynamics (CFD) simulations of flow in an automotive reverse flow type cyclone particle separator using the Reynolds Stress Model (RSM) turbulence model. Steady simulations were found to never fully converge, with pressure, velocity and vorticity results exhibiting small oscillations as the solution was iterated further. Transient simulations showed the presence of a main vortex precession that resulted in periodic fluctuations of the flow parameters. Fourier analysis was used to characterize this semi-periodic flow feature and to assess its effect on the two main performance measures of the cyclone: overall pressure drop and particle separation efficiency.
Technical Paper

Numerical Investigation of the Sensitivity of the Performance Criteria of an Automotive Cyclone Particle Separator to CFD Modeling Parameters

Predicting the optimum performance parameters of an automotive cyclone particle separator (separation efficiency and pressure drop) using computational fluid dynamics by varying its geometrical parameters is challenging and a time consuming process due to the highly swirling nature of the flow. This study presents results of three investigations of the performance and design of a cyclone separator: a sensitivity analysis, deterministic optimization and a reliability based design optimization. All three cases involved variation of four geometric parameters that characterize the design of the cyclone.