Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

CFD-based Robust Optimization of Front-end Cooling Airflow

2007-04-16
2007-01-0105
Development and integration of the cooling system for an automotive vehicle requires a balancing act between several performance and styling objectives. The cooling system needs to provide sufficient air for heat rejection with minimal impact on the aerodynamic drag, styling requirements and other criteria. An optimization of various design parameters is needed to develop a design to meet these objectives in a short amount of time. Increase in the accuracy of the numerical predictions and reduction in the turn-around time has made it possible for Computational Fluid Dynamics (CFD) to be used early in the design phase of the vehicle development. This study shows application of the CFD for robust design of the engine cooling system.
Technical Paper

Designing Suspensions to Achieve Desirable Impact Harshness and Impact Shake Performance

2007-04-16
2007-01-0585
Impact Harshness and Impact Shake are two related aspects of ride performance. Vehicle designs often need to meet the conflicting requirements between these two performance areas. The fundamental dynamics and general effect of vehicle and suspension design parameters need to be understood to reduce the cost and time associated with early vehicle development and ensure built-in quality. This study investigates the influence of the parameters in suspension and tire wheel systems on each of the performance metrics. Attempts are made to rank-order the relative sensitivity of each parameter on each of the metrics and propose approaches to improve ride quality.
Technical Paper

Relative Contributions of Intake and Exhaust Tuning on SI Engine Breathing - A Computational Study

2007-04-16
2007-01-0492
This study examines the contributions and interactions of intake and exhaust tuning on a 4-stroke single-cylinder engine for various engine speeds and valve timings. The parametric study was performed using a 1-D engine simulation model, the combustion sub-model of which was calibrated based on experimental pressure data. Mechanisms by which tuning changes the volumetric efficiency of an engine were studied. Simulation results are compared with established empirical correlations which predict pipe lengths for maximum volumetric efficiency. It was found that intake tuning has a more dominant role in the breathing capability of the engine compared to exhaust tuning and that both are independent from each other. Valve timing was found to have no effect on intake tuning characteristics but to affect exhaust tuning.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

A Comprehensive Method for Piston Secondary Dynamics and Piston-Bore Contact

2007-04-16
2007-01-1249
Low vibration and noise level in internal combustion engines has become an essential part of the design process. It is well known that the piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. The piston secondary motion and piston-bore contact pattern are critical in piston design because they affect the skirt-to-bore impact force and therefore, how the piston impact excitation energy is damped, transmitted and eventually radiated from the engine structure as noise. An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model. The method includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading, piston barrelity and ovality, piston flexibility and skirt-to-bore clearance. The method accounts for piston kinematics, rigid-body dynamics and flexibility.
Technical Paper

A New Calibration Method for Digital 3D Profilometry System

2007-04-16
2007-01-1380
Recently the use of digital 3D profilometry in the automotive industries has become increasingly popular. The effective techniques for 3D shape measurement, especially for the measurement of complicated structures, have become more and more significant. Different optical inspective methods, such as 3D profilometry, laser scanning and Coordinate-Measuring Machine (CMM), have been applied for 3D shape measurement. Among these methods, 3D profilometry seems to be the fastest and inexpensive method with considerably accurate result, and it has simple setup and full field measuring ability compared with other techniques. In this paper, a novel calibration method for 3D-profilometry will be introduced. In this method, a multiple-step calibration procedure is utilized and best-fit calibration curves are obtained to improve measurement accuracy. A recursive algorithm is used for data evaluation, along with calibration data.
Technical Paper

Future Truck Steering Effort Optimization

2007-04-16
2007-01-1155
In an endeavor to improve upon historically subjective and hardware-based steering tuning development, a team was formed to find an optimal and objective solution using Design For Six Sigma (DFSS). The goal was to determine the best valve assembly design within a hydraulic power-steering assist system to yield improved steering effort and feel robustness for all vehicle models in a future truck program. The methodology utilized was not only multifaceted with several Design of Experiments (DOEs), but also took advantage of a CAE-based approach leveraging modeling capabilities in ADAMS for simulating full-vehicle, On-Center Handling behavior. The team investigated thirteen control factors to determine which minimized a realistic, compounded noise strategy while also considering the ideal steering effort function (SEF) desired by the customer. In the end, it was found that response-dependent variability dominated the physics of our valve assembly design concept.
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-04-16
2007-01-1721
Managing (minimizing and optimizing) the total mass of a vehicle is recognized as a critical task during the development of a new vehicle, as well as throughout its production lifecycle. This paper summarizes a literature review of, and investigation into, the strategies, methods and best practices for achieving low total mass in new vehicle programs, and/or mass reductions in existing production vehicle programs. Empirical and quantitative data and examples from the automotive manufacturers and suppliers are also provided in support of the material presented.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Technical Paper

Radial-Ply vs. Bias-Ply Tires' Transmissibility

2007-04-16
2007-01-1513
Full nonlinear finite element radial-ply and bias-ply tire models are developed to investigate different structured tires' transmissibility phenomena. The reaction forces of the tire axles in time domain are recorded first when the tires encounter a bump (cleat), and then the FFT algorithm is applied to examine the dynamic response information in frequency domain. The results of the radial-ply vs. bias-ply tires' transmissibility are validated against previous studies and show reasonable agreement.
Technical Paper

From Algorithms to Software - A Practical Approach to Model-Driven Design

2007-04-16
2007-01-1622
The value of model-based design has been attempted to be communicated for more than a decade. As methods and tools have appeared and disappeared from a series of different vendors it has become apparent that no single vendor has a solution that meets all users’ needs. Recently standards (UML, MDA, MOF, EMF, etc.) have become a dominant force and an alternative to vendor-specific languages and processes. Where these standards have succeeded and vendors have failed is in the realization that they do not provide the answer, but instead provide the foundation to develop the answer. It is in the utilization of these standards and their capability to be customized that companies have achieved success. Customization has occurred to fit organizations, processes, and architectures that leverage the value of model-driven design.
Technical Paper

A Flexible Engine Control Architecture for Model-based Software Development

2007-04-16
2007-01-1623
The fierce competition and shifting consumer demands require automotive companies to be more efficient in all aspects of vehicle development and specifically in the area of embedded engine control system development. In order to reduce development cost, shorten time-to-market, and meet more stringent emission regulations without sacrificing quality, the increasingly complex control algorithms must be transportable and reusable. Within an efficient development process it is necessary that the algorithms can be seamlessly moved throughout different development stages and that they can be easily reused for different applications. In this paper, we propose a flexible engine control architecture that greatly boosts development efficiency.
Technical Paper

Robust Optimization of Engine Lubrication System

2007-04-16
2007-01-1568
The quality of engine lubrication depends upon how much oil is supplied and how the lubricant is pressurized to the lubricated components. These variables strongly affect the safe operation and lifespan of an engine. During the conceptual design stage of an engine, its lubrication system cannot be verified experimentally. It is highly desirable for design engineers to utilize computer simulations and robust design methodology in order to achieve their goal of optimizing the engine lubrication system. The heuristic design principle is a relatively routine resource for design engineers to pursue although it is time consuming and sacrifices valuable developing time. This paper introduces an unusual design methodology in which design engineers were involved in analyzing their own designs along with lubrication system analyst to establish a link between two sophisticated software packages.
Technical Paper

Optimization of HVAC Temperature Regulation Curves with modeFrontier and Fluent

2007-04-16
2007-01-1397
Simultaneously obtaining a linear temperature control curve along with the correct temperature stratification at module outlets is one of the most difficult tasks in developing an automotive HVAC module. Traditionally, Computational Fluid Dynamics (CFD) development of temperature control linearity has been accomplished by iteratively adjusting the location, size and orientation of baffles which redirect warm and cold airstreams. This approach demands considerable interaction from the engineer in building the computational mesh, defining boundary and operating conditions and post processing the simulation results. The present study was conducted to investigate the optimization of HVAC temperature regulation curves using the multi-objective optimization code modeFrontier (1, 3) in conjunction with CFD code, Fluent (2). An auxiliary HVAC module was selected for the present study.
Technical Paper

A Three-Pillar Framework for Model-Based Engine Control System Development

2007-04-16
2007-01-1624
This paper presents a comprehensive Matlab/Simulink-based framework that affords a rapid, systematic, and efficient engine control system development process including automated code generation. The proposed framework hinges on three essential pillars: 1 ) an accurate model for the target engine, 2) a toolset for systematic control design, and 3) a modular system architecture that enhances feature reusability and rapid algorithm deployment. The proposed framework promotes systematic model-based algorithm development and validation in virtual reality. Within this context, the framework affords integration and evaluation of the entire control system at an early development stage, seamless transitions across inherently incompatible product development stages, and rapid code generation for production target hardware.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
X