Refine Your Search

Topic

Search Results

Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

Steady-State Local Heat Flux Measurements in a Straight Pipe Extension of an Exhaust Port of a Spark Ignition Engine

2007-10-29
2007-01-3990
Experiments were carried out on a straight pipe extension of an exhaust port of a multi-cylinder, spark-ignition engine to investigate the axial variation of the steady-state surface heat transfer. Local, steady-state, surface heat flux measurements were made at five different stations on the test section. Based on an optimization procedure developed in this study, the heat-flux measurements obtained for axial distances x / D > 2, were found to be correlated very well (R2 = 0.95) by an equation in the form of an entrance length correction, which is a function solely of x / D, multiplied by the Sieder-Tate convective heat transfer correlation; a correlation valid for fully-developed, steady-state, turbulent, pipe flows. Most importantly, this paper provides strong evidence that the observed heat transfer augmentation in the engine exhaust system is due solely to entrance effects and not due to flow fluctuations, which was the accepted cause.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Technical Paper

Reliability and Resiliency Definitions for Smart Microgrids Based on Utility Theory

2017-03-28
2017-01-0205
Reliability and resiliency (R&R) definitions differ depending on the system under consideration. Generally, each engineering sector defines relevant R&R metrics pertinent to their system. While this can impede cross-disciplinary engineering projects as well as research, it is a necessary strategy to capture all the relevant system characteristics. This paper highlights the difficulties associated with defining performance of such systems while using smart microgrids as an example. Further, it develops metrics and definitions that are useful in assessing their performance, based on utility theory. A microgrid must not only anticipate load conditions but also tolerate partial failures and remain optimally operating. Many of these failures happen infrequently but unexpectedly and therefore are hard to plan for. We discuss real life failure scenarios and show how the proposed definitions and metrics are beneficial.
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Technical Paper

A Decision Analytic Approach to Incorporating Value of Information in Autonomous Systems

2018-04-03
2018-01-0799
Selecting the right transportation platform is challenging, whether it is at a personal level or at an organizational level. In settings where predominantly the functional aspects rule the decision making process, defining the mobility of a vehicle is critical for comparing different offerings and making acquisition decisions. With the advent of intelligent vehicles, exhibiting partial to full autonomy, this challenge is exacerbated. The same vehicle may traverse independently and with greater tolerance for acceleration than human occupied vehicles, while, at the same time struggle with obstacle avoidance. The problem presents itself at the individual vehicle sensing level and also at the vehicle/fleet level. At the sensing and information level, one can be looking at issues of latency, bandwidth and optimal information fusion from multiple sources including privileged sensing. At the overall vehicle level, one focuses more on the ability to complete missions.
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Cycle-Averaged Heat Flux Measurements in a Straight-Pipe Extension of the Exhaust Port of an SI Engine

2006-04-03
2006-01-1033
This paper presents an experimental study of the cycle-averaged, local surface heat transfer, from the exhaust gases to a straight pipe extension of the exhaust port of a four-cylinder spark-ignition (SI) engine, over a wide range of engine operating conditions, from 1000 rpm, light load, through 4000 rpm, full load. The local steady-state heat flux was well correlated by a Nusselt-Reynolds number relationship that included entrance effects. These effects were found to be the major contributor to the local heat transfer augmentation. The Convective Augmentation Factor (CAF), which is defined as the ratio of the measured heat flux to the corresponding heat flux for fully-developed turbulent pipe flow, was found to decrease with increasing Reynolds number and increasing axial distance from the entrance of the test section.
Technical Paper

“The Creation, Development and Implementation of a Lean Systems Course at Oakland University, Rochester, MI”

2005-04-11
2005-01-1798
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Technical Paper

ECU Development for a Formula SAE Engine

2005-04-11
2005-01-0027
Motivated by experiences in the Formula SAE® competition, an engine control unit (ECU) was designed, developed and tested at Oakland University. A systems approach was taken in which the designs of the electronic architecture and software were driven by the mechanical requirements and operational needs of the engine, and by the need for dynamometer testing and tuning functions. An ECU, powered by a 68HC12 microcontroller was developed, including a four-layer circuit board designed for EMC. A GUI was written with Visual C++® for communication with a personal computer (PC). The ECU was systematically tested with an engine simulator, a 2L Ford engine and a 600cc Honda engine, and finally in Oakland's 2004 FSAE vehicle.
Technical Paper

Friction Coefficient Evaluation on Aluminum Alloy Sheet Metal Using Digital Image Correlation

2018-04-03
2018-01-1223
The coefficient of friction between surfaces is an important criterion for predicting metal behavior during sheet metal stamping processes. This research introduces an innovative technique to find the coefficient of friction on a lubricated aluminum sheet metal surface by simulating the industrial manufacturing stamping process while using 3D digital image correlation (3D-DIC) to track the deformation. During testing, a 5000 series aluminum specimen is placed inside a Stretch-Bend-Draw Simulator (SBDS), which operates with a tensile machine to create a stretch and bend effect. The friction coefficient at the contact point between an alloy sheet metal and a punch tool is calculated using an empirical equation previously developed. In order to solve for the unknown friction coefficient, the load force and the drawback force are both required. The tensile machine software only provides the load force applied on the specimen by the load cell.
Technical Paper

Approximating Convective Boundary Conditions for Transient Thermal Simulations with Surrogate Models for Thermal Packaging Studies

2019-04-02
2019-01-0904
The need for transient thermal simulations in vehicle packaging studies has grown rapidly in recent years. To date, the computational costs associated with the transient simulation of 3D conjugate heat transfer phenomena has prohibited the widespread use of full vehicle transient simulations. This paper presents results from a recent study that explored a method to circumvent the computational costs associated with long transient conjugate heat transfer simulations. The proposed method first segregates the thermal structural and fluid physics domains to take advantage of time scale differences. The two domains are then re-coupled to calculate a series of steady state conjugate heat transfer simulations at various vehicle speeds. The local convection terms are then used to construct a set of surrogate models dependent on vehicle speed, that predict the local heat transfer coefficients and the local near wall fluid temperatures.
Technical Paper

Experimental Study of Springback (Side-Wall-Curl) of Sheet Metal based on the DBS System

2019-04-02
2019-01-1088
Springback is a common phenomenon in automotive manufacturing processes, caused by the elastic recovery of the internal stresses during unloading. A thorough understanding of springback is essential for the design of tools used in sheet metal forming operations. A DBS (Draw-bead Simulator) has been used to simulate the forming process for two different sheet metals: aluminum and steel. Two levels of pulling force and two die radii have been enforced to the experimental process to get different springback. Also, the Digital Image Correlation (DIC) system has been adopted to capture the sheet contour and measure the amount of side-wall-curl (sheet springback) after deformation. This paper presents the influence of the material properties, force, and die radius on the deformation and springback after forming. A thorough understanding of this phenomenon is essential, seeing that any curvature in the part wall can affect quality and sustainability.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Technical Paper

Topological Data Analysis for Navigation in Unstructured Environments

2023-04-11
2023-01-0088
Autonomous vehicle navigation, both global and local, makes use of large amounts of multifactorial data from onboard sensors, prior information, and simulations to safely navigate a chosen terrain. Additionally, as each mission has a unique set of requirements, operational environment and vehicle capabilities, any fixed formulation for the cost associated with these attributes is sub-optimal across different missions. Much work has been done in the literature on finding the optimal cost definition and subsequent mission pathing given sufficient measurements of the preference over the mission factors. However, obtaining these measurements can be an arduous and computationally expensive task. Furthermore, the algorithms that utilize this large amount of multifactorial data themselves are time consuming and expensive.
Journal Article

Experimental Investigations Into Free-Circular Upward-Impinging Oil-Jet Heat Transfer of Automotive Pistons

2017-03-28
2017-01-0625
The purpose of this research was to measure and correlate the area-average heat transfer coefficients for free, circular upward-impinging oil-jets onto two automotive pistons having different undercrown shapes and different diameters. For the piston heat transfer studies, two empirical area-average Nusselt number correlations were developed. One was based on the whole piston undercrown surface area with the Nusselt number based on the nozzle diameter, and the other was based on the oil-jet impingement area with the Nusselt number based on the oil-jet effective impingement diameter. The correlations can predict the 95% and 94% of the experimental measurements within 30% error, respectively. The first correlation is simpler to use and can be employed for cases in which the oil jet wets the whole piston undercrown. The latter may be more useful for larger pistons or higher Prandtl number conditions in which the oil jet wets only a portion of the undercrown.
X