Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Hydrogen in Diesel Exhaust: Effect on Diesel Oxidation Catalyst Flow Reactor Experiments and Model Predictions

2009-04-20
2009-01-1268
Engine operating strategies typically geared towards higher fuel economy and lower NOx widely affect exhaust composition and temperature. These exhaust variables critically drive the performance of After Treatment (AT) components, and hence should guide their screening and selection. Towards this end, the effect of H2 level in diesel exhaust on the performance of a Diesel Oxidation Catalyst (DOC) was studied using flow reactor experiments, vehicle emission measurements and mathematical models. Vehicle chassis dynamometer data showed that exhaust from light-duty and heavy-duty diesel trucks contained very little to almost no H2 (FTP average CO/H2 ∼ 40 to 70) as compared to that of a gasoline car exhaust (FTP average CO/H2 ∼ 3). Two identical flow reactor experiments, one with H2 (at CO/H2 ∼ 3) and another with no H2 in the feed were designed to screen DOCs under simulated feed gas conditions that mimicked these two extremes in the exhaust H2 levels.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Post Mortem of an Aged Tier 2 Light-Duty Diesel Truck Aftertreatment System

2009-11-02
2009-01-2711
A 2005 prototype diesel aftertreatment system consisting of diesel oxidation catalysts (DOC), Cu/zeolite Selective Catalytic Reduction (SCR) catalyst, and Catalyzed Diesel Particulate Filter (CDPF) was aged to an equivalent of 120k mi on an engine dynamometer using an aging cycle that incorporated both city and highway driving modes. The program demonstrated durable reduction in particulate matter (PM) and nitrogen oxides (NOx) emissions to federal Tier 2 levels on a 6000 lbs light-duty truck application. Very low sulfur diesel fuel (∼15 ppm) enabled lower PM emissions, reduced the fuel penalty associated with the emission control system, and improved long-term system durability. A total of 643 filter regenerations occurred during the aging that raised the entire catalyst system to high temperatures on a regular basis. After testing the aged system on a 6000 lbs light-duty diesel truck, a post mortem analysis was completed on core samples taken from the DOC, SCR catalyst, and filter.
Journal Article

Tradeoffs in the Evaluation of Light Vehicle Pre-Collision Systems

2014-04-01
2014-01-0158
Pre-collision systems (PCS) use forward-looking sensors to detect the location and motion of vehicles ahead and provide a sequence of actions to help the driver either avoid striking the rear-end of another vehicle or mitigate the severity of the crash. The actions include driver alerts, amplification of driver braking as distance decreases (dynamic brake support, DBS), and automatic braking if the driver has not acted or has not acted sufficiently (crash imminent braking, CIB). Recent efforts by various organizations have sought to define PCS objective test procedures and test equipment in support of consumer information programs and potential certification. This paper presents results and insights from conducting DBS and CIB tests on two production vehicles sold in the US. Eleven scenarios are used to assess the systems' performance. The two systems' performance shows that commercial systems can be quite different.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

Hardware-in-the-Loop and Road Testing of RLVW and GLOSA Connected Vehicle Applications

2020-04-14
2020-01-1379
This paper presents an evaluation of two different Vehicle to Infrastructure (V2I) applications, namely Red Light Violation Warning (RLVW) and Green Light Optimized Speed Advisory (GLOSA). The evaluation method is to first develop and use Hardware-in-the-Loop (HIL) simulator testing, followed by extension of the HIL testing to road testing using an experimental connected vehicle. The HIL simulator used in the testing is a state-of-the-art simulator that consists of the same hardware like the road side unit and traffic cabinet as is used in real intersections and allows testing of numerous different traffic and intersection geometry and timing scenarios realistically. First, the RLVW V2I algorithm is tested in the HIL simulator and then implemented in an On-Board-Unit (OBU) in our experimental vehicle and tested at real world intersections.
Journal Article

A Method of Frequency Content Based Analysis of Driving Braking Behavior

2015-04-14
2015-01-1564
Typically, when one thinks of advanced driver assistance systems (ADAS), systems such as Forward Collision Warning (FCW) and Collision Imminent Braking (CIB) come to mind. In these systems driver assistance is provided based on knowledge about the subject vehicle and surrounding objects. A new class of these systems is being implemented. These systems not only use information on the surrounding objects but also use information on the driver's response to an event, to determine if intervention is necessary. As a result of this trend, an advanced level of understanding of driver braking behavior is necessary. This paper presents an alternate method of analyzing driver braking behavior. This method uses a frequency content based approach to study driver braking and allows for the extraction of significantly more data from driver profiles than traditionally would have been done.
Journal Article

Scaling Considerations for Fluidic Oscillator Flow Control on the Square-back Ahmed Vehicle Model

2015-04-14
2015-01-1561
Improvements in highway fuel economy require clever design and novel methods to reduce the drag coefficient. The integration of active flow control devices into vehicle design shows promise for greater reductions in drag coefficient. This paper examines the use of fluidic oscillators for separation control at the rear of an Ahmed vehicle model. A fluidic oscillator is a simple device that generates a sweeping jet output, similar to some windshield wiper spray nozzles, and is increasingly recognized as an efficient means to control separation. In this study, fluidic oscillators were used to blow unsteady air jets and control flow separation on rear boat-tail flaps, achieving drag reductions greater than 70 counts. The method appears to scale favorably to a larger model, and realistic effects such as a rolling road appear to have a small impact on the oscillator's control authority.
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Journal Article

Start-Up Transient Vibration Analysis of a Vehicle Powertrain System Equipped with a Nonlinear Clutch Damper

2015-06-15
2015-01-2179
The transient vibration phenomenon in a vehicle powertrain system during the start-up (or shut-down) process is studied with focus on the development and experimental validation of the nonlinear powertrain models. First, a new nonlinear four-degree-of-freedom torsional powertrain model for this transient event, under instantaneous flywheel motion input, is developed and then validated with a vehicle start-up experiment. Second, the interactions between the clutch damper and the transmission transients are established via transient metrics. Third, a single-degree-of-freedom nonlinear model, focusing on the multi-staged clutch damper, is developed and its utility is then verified.
Journal Article

Modeling of Active and Passive Damping Patches with Application to a Transmission Casing Cover

2015-06-15
2015-01-2261
Combined active and passive damping is a recent trend that can be an effective solution to challenging NVH problems, especially for lightweight vehicle components that demand advanced noise and vibration treatments. Compact patches are of particular interest due to their small size and cost, however, improved modeling techniques are needed at the design stage for such methods. This paper presents a refined modeling procedure for side-by-side active and passive damping patches applied to thin, plate-like, powertrain casing structures. As an example, a plate with fixed boundaries is modeled as this is representative of real-life transmission covers which often require damping treatments. The proposed model is then utilized to examine several cases of active and passive patch location, and vibration reduction is determined in terms of insertion loss for each case.
X