Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Environmental Testing for the Reliability Effects of Lunar Dust

2009-07-12
2009-01-2378
Orbital Technologies Corporation (ORBITEC) utilizes a variety of in-house testing capabilities (vibration, shock, acoustic loads, space vacuum, temperature cycling, humidity, burn-in, etc.) for qualification and screening of flight components. A lunar dust chamber was designed and constructed to include exposure to lunar regolith and dust simulants. A full factorial design of experiment (DOE) was used to investigate the failure modes of electric fans when exposed to airborne JSC-1AF lunar regolith simulant. This type of testing provides valuable insight into reliability predictions, planned maintenance of a system, and component design improvements to mitigate the effects of lunar dust. Incorporating lunar dust exposure testing at an early stage in the design process will help ensure proper system performance and reliability.
Technical Paper

Biomass Production System (BPS) Ground Based Performance Testing

2002-07-15
2002-01-2482
The longest BPS ground test to-date was the BPS Mission Verification Test done to provide a high fidelity end-to-end system test of BPS hardware and operations. This test took place at Kennedy Space Center from 4/9/01 to 6/21/01. The BPS temperature and humidity control, atmospheric control, lighting, and nutrient delivery systems performed within specifications. Ambient temperature conditions for the test ranged from 22°C to 28°C. Temperature systems performed well over the full range of ambient conditions and temperature setpoints were maintained throughout the test. Humidity setpoints were maintained within specification under nominal conditions; however, drift in humidity was observed during high ambient temperatures with large plant load conditions, and during CO2 drawdowns. CO2 levels in the wheat chambers were within ± 10% of setpoint under nominal conditions. Several automated CO2 drawdowns and CO2 cylinder changeouts were successfully completed.
Technical Paper

Plant Research Unit - Program Overview and Update

2002-07-15
2002-01-2279
The Plant Research Unit (PRU) is the Space Station Biological Research Program plant growth facility being developed for the International Space Station. The plant habitat is designed for experiments in near-zero gravity or it can be rotated by the ISS Centrifuge for experiments at any gravity level from microgravity to twice Earth's gravity. Plant experimentation will be possible in multiple Plant Research Units at one time, isolating the effect of gravity on the biological specimens. The PRU will provide and control all aspects of a plant's needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut's environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, nutrient delivery, and air filtering and cleaning must be done in a very small volume, with very little mass and power usage and with minimal crew time.
X